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= tary school or an adult who has not studied school mathematics (or has

. -
N . -~

o - . Y
CHAPTER 1. "USING.CALCI LATORS IN‘MATHEMAJ[CS-

0 . _ ) s
’ T he :
In this chapter you will become familiar with diﬁ"e rent kinds of
N . = v .

calculating languages and you will learn how to compute with aléebrai'c, .

N «

AH, RPN, -and arithmetic calculator logics‘., Yol will also learn simple
programming and haw to tfanslate a verbal algorithm into calculator,

"microprocessor, or computer steps. ' . .
. i .\

\/ * . ‘ ' .
1.1 Order of Operations

-

™ Communication of ideas is important in matheriic‘s. The reader
. . ' 4

¢ « ¢
' of mathematics mustaunderstand ;vhat the writer of mathematics means.
e
. For this reasan we adopt rules for wr&*and readin‘g that are generally
. . [
accepted. For example, when we write

5+2x3
. 4
we want altreaders to interpret what we have written in the same way.
- <
Of the.two choices -
\

fa) 5+2x3 (b) 542 %3
. 7%3 - R 5+ 6

21 ’ . 11
' [ &

~ " you would-probably choose (b), answer 11, be‘c\a‘uée you recall rules for

) order of opérat,'\oni. Unfortunately a younger brother or sister in elemen-

- L}

-

e : - \
forgotten it) would probably choose-(a). Thus rules designed to improve
1] .(. , . A4 i

r 4

(
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» ™ . N
communication sémetimes fail. We will review those rules and ‘see

» - : .. . - i B ~ : \
‘ how caiculatore force us once agdin ro waich gur siep. ,
v ’ :
ORDER OF OPERATIONS RULE. -Apply operations .
. . ¢
. W - . . .
- in the following order:
. S | (1) within parentheses -
{ ' (2) exponentiation (powers and roots): R
\ (3). multiplication and division® AR )
' (4) addition and subtraction
. . o
Students “sometimés reﬁember this rule by the mnemonic: s s
~ o ‘ . .

A ' N
Please Enter, My Dear Aunt Sally (fqr Barentheses, exponents,
= 3 R 2 = &

a : .
- S R e [ [ R S8R B ] Ol I e |

mult‘iplication, El_iv'\sion,‘ addition, _s_ubtractionl Only in the absence of
- - N \
rule priorities do you calculate left to right.

p EXAMPLE 1. 1-1 Evaluate 2 42 -8 - Jg—+ 5 8
* “ Y « ¢
" Solution: 2 ° 4% - 6 : ‘?«» 5- 8
' . % 3 . -
' ¢ ) 2-16-6:% +5- 8 exponentiation .
. " 3214+ 40 " multiplication and division .
:. 58 ’ addition and subtr/action
T ' ‘ E ) .
. 25443 - 4 .
EXAMPLEF1. 1-2 Evaluate 5. 5 32 /
. T 543 -4 S
Solution: . 10 5 . 3f‘ @
2 >+ 3 4 /r- ’ exponentiation
. 10 2 - 9 P N 3’
] . ‘ . . . ‘-’
- . .
' '
L J
i) .. R . "‘
. * »

In order to avoid rare instances wlNgtq confugsion might'arise, some
authors instst upon multiplication before-division, We do not adopt '

: . that convertion in this tdkt. ° N .
' » - . § ‘




-
<

10 + 12

20.9 - multiplication., Note that the

fraction bar (vinculum) plays

a'xole as parentheses. * - Thus
-numerator and denominator are

sir’pplified bef/ore division.

4

addition and subtraction
‘
2. § (division
, . , : . ‘
* These examples have been worked out in detail. In practice many of
] .

! »
these steps would be, skipped. For example the second solution might

be recorded as ' ) <
2" 5+3- 4 - .

(2) 2(3%

« (3) : (4) (6 +2)3.
¢5) . (6) (7+2)5 .
(7) ' ' (8) * 2(5+7) —

. 2
9 - 16 Some writers use parentheses as "insurance' to guaranteb
~

that readers will cadculate in the desired order. When it is possible

1

in each of the following, write an equivalent expression without
A . *
parentheses.’ ~

-
1)

(9) (ab) + (cd) (10)E,  (a-+ b)(c + d)

a . c . a .(c €
(11) (E a3 d)x (12) b '(d X f)

# ' . ,
" Another example of this usage is in roots like Yx + y. - The root symbol ,
is ¥ and the.bar is a grouping symbol. In Europe Vx + y is often

written V¥ (x +y) .
5 T
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*
. \ : .

(13) a[b+c(d+e)j _ " 4). {[(a+b)+c]- d}
P S ~ e b
, - 16
‘ ) _(1.3.) iuan; +'Cj‘d; + e ‘ {16} _[(cd) el
D . ' S 7 N ;
- 17. For each of the exer‘(}@uﬂ ‘- 16, evaluate (;.)\the original ex- i a
. - . ’ . . ,
] ?ression ar\cL(b) your si‘mplified expression for the values a = 6, T . II
. . ’ : . X :
- b=3, c=4;,d=2,4%=7 fz-1, f l
;o : ™
. 18 - 24. Notice in the followiné exerciseés how order m\a.keé“no difference
" Y ) . .
t in exercises involving addition and subtraction, but seems to in l
’ . .~ .
| . exercises involving multiplication and division. Evaluate: I
l . T(18) 2 -3 +5 (19) 2+5-3 '
| (20) -3 +(5+2) . (21) 2:10 %X 5 " Be careful! I
1 - &4 . . *
) , To(22) 2 ¥%5:10 ‘ (23) 2 : (10 x%5) .

r

|

I M 2

; ‘ F RN i. /
* .

| T

}

.
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1.2 Calculating Logic: Algebraic with Memory

.

- ’
v -

The calculator or computer user must learn how to process numbers_
. . R
on the specific instrument he is using. This i's important bgcause of dif-.
L] - i ° b '
-
ferences among calculating devices. In this'section and the next three, we
!t -

introduce several common calculating ''logics''. st>calculators operate

. ’

by one of them or by a minor variation. A usef fends to become accustorned
to the 1cgic of his machine and to prefer it. Indeed, each has certain ad-

vantages which we will consider. Evea if you will be using a calculatfng

N ) sy -
device with a particular logic system, 1(\15 important to know how, the others

work. '‘Who knows what kind you'il be using next?

ALGEBRAIC LOGIC

Algebraic logic is a common calcu- .
- 0

lator logic: The figure d#splays a keyboard

for a simple algebraic logic calculator. (Do

-

not lock for, a calculator with this exact dis-

play as most have additional keys like | %

L% .
and J that are useful but not ngg =mary

4 ('\
\d

to this discussion.) Some keys are m),

-

with common abbreviations that we willlcontinue
to use in this tekt: CL; - clear; STO - store;

RCL - recall; CHS - change sign. This last key is sor'negimeb marked

4+/-] instead. ~

=




o, : .
S . o2 .2 -
The logic of this machine is called aigebra,ic but it'doesn't follow _

R . e . s 32 -

the order rules of algebrafyou' leanne(c} in Secti-o/n 1.1. Calculations

- 4 . - ;. ‘ > . \‘ -
' .

are fed into the machine much as you would type them on a typewriter

' "N R . . LY
(without spacing). Thus the multiplication 23 X 56 would be keyec‘l )

!
I
!
I
U REEREE -’},’(:
!
I
l

"An instant aﬁ:'sr the =.| is pfes sed the calculator d{splays the R

~—

product
‘ o, 1288 * Y

. 1

s

, " Chains of operatiofs may also Bg kéyed c.lirectly. into the calcu-

lator'under certain conditions. - . . . .

Ps

EXAMPLE 1.2 - L. Calculate 21 ¥ 32X 61 & 24 o :

¢

Solution:- Key:

2 1]’7~J3~2|X‘6J1 ;]2 s =

L—.

Final Display: 1708. - ‘ :

EAMPLEIZ-Z Calcat 3.1-5.7+4.6
, / .’n a

Solution' ‘ Key' ' ] \ : v

We will not attempt to replicate calculator or compute:'r displa'ys in this
text. Machines differ widely;. most, however c}ijplay numbers by lighting,
filling with liquid, or printing some or all of seveh,small bars E.
These may be seen by looking closely.* You mjpht like to determine how

many different displays could be made.with t‘-he e seven bars



:l'

:tlons. InhExample_l.Z-l, for insfance‘ when the .second X is

“the : s keyed theyd’isp}ay changes to Yo .
: ]

- centfal message in all' that follows. )

.

. » -
v
. . . . , "
- . .
3 =
~ M =
’ l ‘ / ;‘
> . . ‘ -
ce % . .
0
)
.

Display: 2 : ‘- . |
“ ' “; ' , .
It is both interesting and useful to rote that interme/dj_a}e results are |
\ - . . -

displayed.on the calculator’at various points in these 'chains of opera-

L

-
4

keyed in the calculatien the display becomes

1 672 ; ) d ' »
' 7

which is the product 21 %X 32, the first¥/ two factors.: Similarly w{mn

' 40992

\. ) ] . .
the result of the calculation to this point (21 X.32 ¥ 61 = 40'992).

4
N

In exactly, the same way in Exarmpple 1.2-2 the intermediate result
a : [} -
"' -2.6 . . '

£

- ~

[ 4

is displayed when the |+ | is keyed. ' ' ;

-
) —

It should be clear that algebraic logic is fine for chained compu-

tations that pr'ocess‘ left to right,” But we hau}'in’Sectiop'l. 1 that many

+

\

' computations do not have thig s'imple order, S\’h comﬁutatibns lead to
. .‘ - "

problems. To detect these problems the/user mh.st be alert; to solve

them ingenuity must be exercised. The user must supply the one thing
. Y hd . .

-

the calculator cannot: thinking! (T}xis last sentence wil)l, in fact, be a -

v -
L

’ -

4

\ Consider the calculation
. :rﬁ
/

bl [\
X [X

EXAMPLE 1.2-3.

4

-




)

. i - [ ¢ * . ]
r - .
A ~ ’ 1.2 - 4
Py ] ’\\‘ - ‘ § '
e "
. ~ -
We khow that the answer tq this calculatipn.is.3£10 or '3, armd we - '

/.

would éxpect the calculatpr to didplay 0.3 “You might attempt to carry

R . o\ : . .
this out by the following sequence. 7 ] ' I
: . \ ’ -
2 |7t | 31 I % L’4 -
1% LRIy |
t rE
The result of this sequence is 4.8, the wrong answer Can you see
. : . : s .
‘what is incorrect in Hre.cd ption? The ei'ror is identified if the I
l . ’ e " ' o . ﬁ . ’ A
fraction §s fepresented differentiy: ' ' ‘\Q l
.o i ., _ .
e x 3 . 1 l. € : ’
= 2 3% = 2% 3 ¥ = — = 2X%X.3:53:4
X T 4 - g x 3 X n X 3. ¥ 5 5( 2 I
. ® . . : < b
Thus, in g'energl, each factor gf the whol_e denominator is a divisor This l

. 3 , .
‘when the dénominater is a sum. See example 1.2-4.)

is a useful calculating techpique to remember (but be'wa,of applying it

-

A cor’rected qaLc\ul'ation is - "
. ; - ] .
alidciniosinE | :

, A - . . >

L

l

|

giving the correct result : L f v l
|

..

o \o./s/);
A more difficult problem is presented by a calc lation like:
: ’

- ,,.’ - , -
1 L3

EXAMPLE 1. 2-4.
49 +‘38." .\ .
85 + 96

~

This time we *have no direct solution technique. Several alternatives are .

available: ) . . .. Mg

[ . , 1 3




] Calgulate 49 1+ 38. Record the answer 8
- ’ . ,Jo
scratch pad. Calculate 85T 96. Record this-'answer, 181

on a

.- | ‘ / '

. T , *
* Calculate 87 3 181, This guotient, 0. 4807 is the answem
. ) , : :

. to the exercise. g

} . - -

There is-nothing 'wrorg with the solution shown here, but such a solution
/ ‘ . .

does- not use the full power oftQa)cat'culator. It is more.than a matter of
t .- .

Al

elegance not to have to write down such intermediate answers. Time may
- . —— 4 ‘
i

[

be lost and additional oppostunities for errdr are accumulated as you copy.
and reenter numbers, ‘Use of calculator storage. (or memory) provides an

alternative. - . . .

Solution (2) ' ) ’ _ . .

8 5 + 9 (|6 = Calculate the denominator, 181. \
STO | ' Store this numbér in calc;xlato.r memory.

F

Calculate the numerator, 87.

L)

LI

IRCL br{ngg back the denominator

a)e

181 from memory.

= . The quotient 0<8’07 is displayed.

-
i

-

’

* ) " .
Results in this text will be given for 4-digit decimal rounding displays.

L

4 »

la 14 . s
’ - \J




Exercise Set 1.2

-

Some of tpese exercises call for a cakcuia,tor with simple algebraic

-

-

o

logic with memory.=(If yourcalculator alse has parentheses keys, do not

»
.

use them.g)

. 1) Name four other keys-that could repla.ce = I in the calculation

of Examples 1 and 2 to give the same answer 'State a reason why
- TN

you would not use these substituyte keys if you were carrying out a

L

L4

s\erie% of calculations. (Try calculating 2X 3%, followed without
- 4 . . .

¥

clearing by. calcylating 3 + 4.)

2) Oneé st;ap in Solution_1I 2;4(2) of the text may be eliminated. Examine
! =1 : e .

the calculdfion care,.fpll‘f in order to find the extra step. Check your

Al

» . more elegant solution on a calculator.

-

' v K .
3) In.Solution 1.2-4(2) we calculated"the denominator first. Try cal- .
culating the numerator first. What happéns?. (Some more sophis-r

ticated calculators have a key that switches the conte'ntv{ store
. 7

’

and the Hisplay registers to avoid this kind of trap.)

4 - 10 Calculate, keeping intermediate record keeping to a minimum.
. \ L

Note which exercises require such records. RECALL THE ORDER RULES \

FROM SECTION 1.1.

[

4) 237 X 42.5 + 38.46 5) 39.42 +861.7 X 6. 03

6). 23.7 ;.06 X 13. 2 ' 7) (78.35 +\91.46)(14. 08 - 27.6:1)

8)‘—— 2. 83' Tx:y to find an elegant way to calculate this, {
( ' ' \ \

| v ' 15




« “% a
- . s l , - 1 ‘é’ . _f
.' "-“". [ -,
. i 1.2 -7~
. & -~ :
- . ' P 4
- q , - 3 i
gy 37.48-16.89 o 10) 64.32 ‘ . ‘
64,32 . 37.48 - 16.89 - T

‘

\J ’ M

v . -
3

11) How should the afn‘s?vérs to exercises 9 and 10 be related? Chéck
. .

- - this by cal;ulatiz. _'
\ . ‘
12 - 16 Calculate. WNote intermediate records. S / ‘
N ' .
12)  239.5-67.34. . 13y 74.2)(86.3)
(74.2)(86. 3) ' 239.5 - 67.34
[T * ) . “
' ‘ |
14)  (37.4-.18.4)(15.2 - 83.1)(64.2 + 73.8) Beware: Some algebraic ' |
» ot *
calculators allow the u/ser only to add to or subtract from‘mpmory. - |
— ; i L ! . .
.+ If you are using one of those calculators, be sure to clear memory <
beforestoring a second number. k
15)" (37.6 -18.4)(15.2 - 83.1), 16) 4231(16.8 - 23.4)
64.2 + 73. 8 (83 - 1.3752) 62.43
et . ,. '
» | ‘ ” \ / c
Y p " ‘
- !
. 7
- ) v J AN
5 N *
/w .
4 38 / ' ' - :

,,%‘A‘r’ v
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1.3, 'Calculator Logic: Algebraic with Parentheses*

r

J

i
S ]

-
.

The simple a.ddi_t.ibn of parentheges to ﬂxe algebraic keyboard sim-

-

.

C plifies much computation . The figure diskf 1CLR1 (

. plays a keyboardlfor a calculator operating 711 8 9 %
with this logic which we will call AP. Al- s 5 } 6 \ )
B . — } ) —
- .most all such calculators have additional L by,
. B 2 . 3 © 4 ] .

-t
.

we [stol | [Renl. g —= '
features like STO"- ' RCLJ. x| ” Lo . CHS

% ; wand I/x} , but we restrict our

discussion to the ones shown. o .

A quick comparison of this keyboard with the keyboard of Section \

1.2 shows that only two keys are different: |STO and( RCL| are

1
) ) .

replaced by ’ ( t and ) . Surprisingly this minor modification
| ’
makes theekeying of complex calculations much simpler.. v
: A ‘

—

4

The main point to Jemember: Parentheses on the calculator play

the same role of grouping computations that they do in a-lge'bra. There .is, !

4 . S . .
' however, a difference in usage. The algebraic expression <
3\ \ .

r

a{b+(cd-e)} ‘

-

.
' B R - DR

’ would gppfar as the calculator saguence -

. . ‘
ax(b+(cxd- e) = 3 I
- - T (e
>'  in sections 1.3 ihrough 1.57 we will refer to algé€braic logic with paren-

theses as AP ™n order to differentiate it from the algebraic memory logic .
of section 1.2y : ) ’



Thus braces; bracket.; and other gr‘ouping Symbolls 'areba’ll representeci o

by the same s’y'mbols, parentheses. ) : , .

-
N : BN
.

A
. EXAMPLE 1.3.1, 33

’

v (Recall that this was Example 1.2-4 of the last séctién.) ’ ’ )
. L
‘ Solution: - ’ ¢
4 9 + J 3 8 - Calculate t};e nurherator
. . .
: . 3 . — Divided by...(numerator displayed: 87)
L

& ... the quantity ... (signals a calculation

- to be done out o[‘sequence)

{ 9 j 4[ é Calculate the denominatox; ¢

Completes the calculation in parentheses

' and displays it (181) )

= Dis¥lays the quotient of 87 - 181, 9. 4807

r—

Notice the effect of the righ't parer;thesis,’ L )

L]
i

\/\ (1) It plays the role of the | = key for the calculation since the ,
Eost recent left parenthesis | ( and displays the result.
(2) 1t "backs up" the calculation to where the left parenthesis (
1 ’ -
2 was keyed.” Thus the calculator acts as though you had just entered
. ‘ ” .
. the calcula}ed value of what is in parentheses. N
S - . k N
o WARNING: PRarentheses do NOT represerit multiplication'
N ; E « - -
‘The next example will show this
. ' A
+ 4
L] -~ )




' 1.3 3
. ' .
EXAMPLE 1.3-2 4.9(3.7-809)
> )
Solution:
4 lL_! H a ! !CHS " ! Enter the multiplier, -4 9
1 I _J L—_—} . .
. - X | ) ' / " Multiplied by . . (since the paréntheses
i . ‘ - p

do not carry this meaning}

13

=
B

Calc/ulates. the value of the/expression

-

; in pa®entheses (-5.2)

A . ‘
= | Displays the product of -4. 9 and -5.2,
- J : .
' s the answer 25.48 /
: . . . [ 4
e
A modificd algebrai¢ logic that is closer to the rules of section 1.1
is called ,%4 or AOS logic. Calculators like the TI;58 employ this legic.
These letters represent the words Hierarchical Algeb/rax nd Algebraic
_ . . N
Operating System. With AH logic calculators the calculation A ,
Yo AFS5XKT )
.o 4 ’ . A~
i could be key2d left to right without parenthes€s. N
re . ) < \ ) .
. e L o [ L -
The calculator ''remembers' when the b4 ! is pressed that multipli-

¢ ‘
cation takes precedence o%er addition. ' .

 w
v ! ' ot
AH calculators also require either memory or parentheses to procenl/

e/Bcerc.ise‘s like Example’ 1 3- 1., On ar AH calculator*with parentheses %1/
- " .

-

_calculatien would be:

ERIENEAInnE

saimisuissirsizeinaivn
Eatiitiiia |

s

©

.

.
R SR SEE BN = =

v



e ' ‘
~ ‘ 'S , J_‘
\"- 1.3-4 L
L4 14 . PO : L
| iy
¢ - R . S
v ’ - \ T
- T "Wit;hout the first pair of parehthesps‘ the calculation would be for: Lo '4(
’ - 38 ' I3
49 + = ' y :
: 85 + 96
S \ _ . . ,
R : Without either pair it would be . )\ E
| o . .
I ‘ 38 |
. 3 49 + 22 4+ 96
| ‘ . 85
. i ' \
1 . " . ‘
I All AH calculators have both memory and pirentheses as calculator ’
' i
l functions. : . e
E— , {
. . i
T - '
Exercise Set]. 3 ' P ‘ 1 o *
» ) 4 : ' . LI
) 1 -10 Rewrite each of the following expressions, for AP logic: - . g
. i . L N,
- (a) removing parentheses that will not change the value algebraically,
. (b) removing parentheses that will not change thé value in ctalculgtor

)
T

computation

1 3 + (5-17 * ) 2) 20 ;(,.(1‘0 ; 5) .
Co H) S 4) 20 : (10 X 5)
. 5) (8 (3 +5) 6) (27.3 +41 7)3. 6 '
7)) 2734 (41.7 X 3. 6) ’ 8) (41.7X 3.6)°+27.3 B
9)  41.7'% (D + 27.3) . oy . 28x3)+8 e

(26 + 7) x 4)
p ) 4 )

11 - 14 Compute with an AP calculagto;: )
. ' : r
"11)  37.8 + (.06 X 3L B8) 12)  -1.06% 37 8
7
13) (2.8 % 4.5)%(16 + 39, 23)? 14) ._26.4
PA : 0h31 - 1256k
i
\ L]
A Y t
:v(} A4




P
v

<4

' . ]
/ . 7 -
- R 1.3-5
N ~ ; - -7 .
e » * \‘ / —
15 - 16  .Calculate by aigebraigjmqmcr,‘;', by AP and by AH to
. “ ' ‘" . ’
compare procedures: - - 4 i t :
© . r o :‘AV . ! , [
15) 27 84 16y L (48,3 4 27.9)(T9.4°5 43. TN6T. 1 - 4)
“ . \ - [

264 - 189

17)  In the song "The Twelve Dﬁys.of Christmas’, the lyries begin:

t

'On the first day of Christmas -
- 1f
My true love gave to me -

y+ A partridge in a pear trée
»

A}

3
. . On the second day are given: .
. . , . f

Two turtle'doves and a partridge

— . :

On the third day:
hens, -two turtle doves and a partridge.

Three French

cugh twpive\days until on the twelfth, for exambple,

So it goes thr
.

-

-

she receives: , .

" "Twelve h@»ﬂ( aleaping, elevén ladies waiting, ten...

U ", »
[all the way down to]... @ partridge in a pear tree.'-

» . .t .
Now suppose that on Christmas day the lovers break up and the gifts g

\ »
,are retirned one each day. For example, on the day‘fter Christmas one

' .

of the part'ridgegnight be returned, the next day another, the following day,
- v
another, the foliowing day a French hen, and so on. When will all the gifts
iy S .
have been returned? Y

-

Bl Em s s

N\
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. K ) -

[ d ~—

P

{.4 Calculator Logic: .Reverse" Polish Notation . < - . p_ 4
. \ - 4 . N

The letteré RPN represent Reverse Polish Nntation, the.country
» designated because the Polish logician J. Lukasiewicz develpped the system.

RPN is, in fact, often called Lukasiewicz logic. The reason for the R (Re-

4
'

verse) is that in this notation dperation symbols are applied in order that is

]

) . {
the reverse of what we learn in arithmetic and algebra. Thus

3+4 inRPN is 3 4 +
Think about that notation for a minute. What would happen if you keyed
into any calculator: ) '
A (4
& . Pa 14+ 'I ? . '
L r . e
It wo.’uld record the number 34. Because of this problem an additional key
- ' I M
appears on RPN calculator keyboards, the |ENTER + key. Thus
= : “ ' : ‘

3 4+ 4 'is keyed: > . 4

L 3| |ENTER| |4 ||+ .

- — . ’

On many RPN keyboards the ENTER key is larger beﬁuse it i8 used so
“ <

-

often.
< .

- 2

Why would anyone want to change things around like that? It turns
out that there are good reasons for doing so.- If you exénine Algebraic and

RPN keyboards,' you will see that the RPN ENTER replaces three algebraic

» - 4 - } *
keys: ‘e ' - P R R
co ] : -
|8
- . ]
* T N - : ' .
We will soon see that the arrow ( f) on this key has a role to play as well. M
N ~ e SR N IS .

S




1.4 .2

a*

* ' RPN" Algebraic or AH S

\

. ‘ R ,
. ENTER =] | L)' .

Ay

»

e 1
. ' - ¥ i N
; : &

We will now ex“pfora how this works.

: All calculaflims must retain numbers and ppefatioﬁs in memory
" ) . o { ‘ *

ddring calculations. ' If this were not true, the calculator wQuld "forget"

the 3 when you soyght to add 4 to it in the calculation 3 + 4. To accemplish

: - . ke
- this RPN calculators have what is called a stack,
- - .
, The calculator display is the '"bottorn'' register of*the stack. '"Above"
. h . RN S o . ‘ .
. it are additional registems. Here is the four registgr stack found ona
4 : ’
U typical RPN programmable calculator: - ‘
N ‘ . '
. REGISTER NAME a : >
S /_: T 0 d .
. \ : . .
\" ) z | 0 .
., B i ’ . ‘Y ' o i o’ ]
’ . . .
o X 0 DISPLAY < . 4
4 " = s
. - T *
! . The stack registers dre arbitrarily named X, (the display register),
. ‘Y, Z, and T, as shown. t ‘ < . . X

.
) ' ’ .
As a number is entered in the stack it pushes other numbers up.

When an operation is performed the stack (usually) moves down.
» . / .
v

y s

- ‘ .

. RPN logic with an n-register stack also replaces n-2 algebraic storage
ha

r?gistere. . '

*
[

’

%2 % - - 4
L} ‘ , . ”
In fact all calculators have similar stacks, On algeb::'}l;(nc/calculators,
for exarnhple, the E key or even the key activate’a stack. Because
the stack plays a greater role in RPN, it is'considered here in more detail.

» ' 23 ., . ’

~ ! . ‘ . o




< _ﬁxAMPLE 1.4-1 » -Add 23 and 41

ce e \
KEYS ., STACK

‘

C A

{ 2 RN T 0’ T g

L - Step 1. When 23 is
Z 0 . keyed, it enters

the X-register in

0 " the stack.

‘DISPLAY

/
Step 2. When ENTER
is keyed, the X-register
is copied into the Y- .
reg'tste} (Y and Z re-
gistgrs also move
DISPLAY  up one level.)

£

Y

Y Step_; When 41 is
' keyed, .it REPLACES
the cormtents of the
X-register.

DISPLAY

» .
Step 4. When + is keyed,
it adds the X and Y re-

. gisters. (T and Z_re-
0 gisters also move dowp-
one level.)'

64 DISPLAY

-

\ -
>

5 L

The pbwer of the ENTER key and the stack will be shown through a second

- 'example, a type of calculation that was a problem for us in AH and algcbraic-

. {
memory logics.




! : T 36.2
EXAMPLE 1.4-2 . - Calculate
. 25.8 - 28.3

~

-

KEYS |, STACK

‘0'. ]

Step 1. Key in 36.2.

0 + * Itfappears in the
X-register display.

H

DISPLAY

P Step 2. ENTER copies
' X into Y.

Step 3. The 25.8 re-
places 36.2 in the
X-register display.

DISPLAY <

. Step4. ENTER copies
X and moves Y to Z.
This second ENTER
key allows us to calcu-
late the denomina-

DISPLAY tor separately.

I




STACK

-~ "
ot T 0
2 || 8 36.2
N S 2
Y| 25,8
X| 28.3°
, ,"'r 0
z{' 0
—| ~ .
< ' Y| 36 2
r Al
X 2.5
- ’ ’ '
- 36.2 =36.2 N
25.8-28.3 . .2.5 o
. T 0
% . Z 0
. N Y 0
. X |-14 .48
36:2
25.8 - 28.3 -14 48

F °

/

The following diagra‘m's will show how the registers in a 4 register

Step 5. The 28.3 re-
places 25.8 in the X-
registér display. Now
all numbers are jn the

stack.

>

o A
Step 66 The contents gf
the X-register is subtrac-
ted from the Y-register.
Z moves down to Y. The
- X-register now displays
DISPLAY -2.5=25,8 - 28.3,
’ the walue of the de-. .o
nominator of the fraction
being computed.

DISPLAY ~

Step 7. The Y-register is_
divided by the X-register
and the answer displayed. -

. - s

DISPLAY

e A

stack change when various keys are depressed.
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&

—Y
x (Opx

=

N

5/

N

T—T

Y Y

Dty

b -~

Arithmetic logic. A

-

'

-

L}

RPN légis_,:;xse the EI;ITE'R key (for binary ;)pe rations)
- . (1) after the first number ?n a: calculation

(2) affer the first number in a sub-calgulation (the

"“fdeno;ninator of a fraction or any other calcula-

tion that would be placed in par'ensle.ses. )

A final calculator logig whic
=

.
e’
.

*

-

®

-

o

. oK
Recall that-if a number is keyed next it will replace this.

R}

?

27

h we comment on only briefly is called’
rithmetic logic is like RPN for addition and subtrac-

tion and. like aigebgé logic for multiplication and division. The easie\uf/

’
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1.4 -

7 -

way to identify Arithmetic logic calculators is by the combined function

keys

+/=

and -

7.

'+ ]

.

Many business calculators operate with Arithmetic logic. We will not

‘ [
refer to this logic again in this text.

*Exencise Set 1.4

1-12"

before the

}

~¥ .

€

*

\'.

In each of the.following exercises, the stack is shown as it was

key is depresse§.

N 2)
N
AN
3
4 rd
3>
5) |1 6)
2[5 |
- P BE .
4 | GAREFUL!
9) [1 10)
2 -
.
4 .

PR

%

7

Ve

" 3)
2 ||
3
4
(1 7)
2| lcLx
3
4
~
0O . 11)
2 N 3
3| WHAT bO
0] . YyOu THINK
2 )

-

is depressed. Show what the stack will be after the given

8 4) |1
0 \X' 2 ||IENTER
2 | — 3
2 [
1] 8 [ .
2 clear W 1 CHS .
3 I ISTK . 1
4 | 1
0 12) 135
of |ENTE 0 ENTER
0 ’ 0
35 - 0

.

13 - 18. In the following exercises, show what the stack will be after eaeh

key is depressed.

13) [cLr|[5 |[ENTER] [3 ][ + 14)
15) |CLR| |5 | [X 16)
L4 v l

CLR| {5 |[ENTER| {x |
— ]
CLR|| 3 ENTEq

ENTER| [ +




, - L\
17y [cLr [z] 3 ENTEﬂ . S_J'.E . o
18) @ 5] [4] \ENTER} 0]
‘ /

19) Express in algebraic form the calculaht’lon carried ou'gin exercises

-' “

14 - 18. .(For example, exercise 13 is 5 + 3=8.)"
*

- -

20 - 26 Give the RPN keystrokes for the following computations. Then

Al

. calculate.
20) (2 +3)4 _ 21) % + 4 A
2 rrioe. '
22) 4+ % (Hint: :;\ ENTER [_2] EDD )
23) (2 +3)(4 +5) 24) %— + % ’
\y . . .
25y 243 ‘ : 26) (2 +3)4 +5)(6+T)
4 +5 / i

- L3

27) Show a second way to calculate exercise 26.

28) Give a keystroke sequence that will fill the stacksin the following ~__

————

» way T 6 ¢
2| 7 |
v| 8 |
x| 8 DISPLAY k

. ‘ﬂ —3.

29) Recalculate exercises 16 and 18 with the stack at the beginning of

1}4 ‘ the calculation in the form of cxerc ise 28 and omlttmg the L
\

key. This exercise should show you that IT IS NOT NECESSARY o~

TO CLEAR THE STACK IN ORDER TO CARRY OUT MOST CALCU-

= e LATIONS.

30) Use an RPN calculator to compute une answer to exercise 17 of

-

Ipction 1.3 (on page 1.3 - 5). . - p;

C




o

- -

and RPN legics. Moyt of these differg{mes apply to binary operations,
that is operat‘ion“.hat '"'combine'' two elements into one:* Addition, sub-

traction, miultiplicgtion and division are the common bina.;’y:.operations
‘ 9

of/%iﬁvm-tif:. We met in section 1.4 one other, yx, which we will
p 4

+

_cons ider shortly.

Rovemomd

The foliowing opérations are unafy operatﬁ‘s, that is operations

. that need only one element to process.

Ux. . ' sine CHS Py
2 % . £
x cosine-. INT
. 1/x ; tangent FRACT"_E ’
R 10 ABS
(We will introduce other unary operai:ions such as log x, lnx, and e*, .
-’
. later, ) : , ; . .

All c,a:icplators process unary operat{ons by RPN' The x-value is

* , \
- keyed into the calculator and the function key is pressed.
EXAMPLE 1.5-1 Calculate V51’ . -~
» — .
- " Keystroke sequence 5 bjlyx _ . N
’ Answer: 7.1414 T il

C 3, 30




EXAMPLE 1.5-2 ‘Calculate sin-30° - -

Keystrgke: sequence¥ '3 0.! |SIN

Answer: .5
EXAMPLE 1.5-3  Find the reciprocal of 10

" 4 2
X

Keyboard sequence 1: 1

0.
Keyboard sequence 2: N ry {Ox 1/x
]

Answer: - . 0’1
v

‘ ‘ 4
In all cases these function keys operate on the number in the display or

X register. Note that it is not necessary to depress-the ENTER key on '
. \,. N

“ an RPN-calculator before using. them. For any unary {fhction {f the

stack diagram is: f

g T—>T

Z —— 2
Y —Y

X f(x)—X

-

[}

‘The unary functions INT, FRACT and ABS will be considered in the ex-

— L. 1 - N
ercises. ‘ ’ /\

One important function that does differ between AH and RPN cal-

culators is exponentiation (raising to a power). This is a binary opera-

i ‘ ) LR
tion becduse ° q .

- requires the two input elements p and q.

-

3
. ,

Most calculators assume input to trigonometric functions'to be in
degrees. We will also unless otherwise mentioned See Chapter 7.

{ ' -
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L WY

. - . 1.5-.3

ce

-

" EXAMPLE 1.5-%  Compute 7°

AH keystroke sequence: | 7 w 4 =

* RPN keystroke sequence: 7 | |[ENTER| | 4 y

‘Answer: . 2401

ty

‘When using this |y*| key, you wil] meet for the first time the fact

/
that calculators sometimé{prod\me enly approximatg.answers. In the

calculation of 74, for example,f a calculator might display. the answer
/ A . : °

2400. 9993. Now we know that 7% is an integer and we can find it exactly
by multiplying 7% 7 X 7 %7 toget 2401. The error (of .0007 in
. . ‘

‘this case) is introduced by the logarithmic processing usecf by the calcu-

*® N \

lator |y*| key. We will study this later. For npw it is usually enough to

round off such answers to the nearest integer.

»

S

——

Exercise Set 1.5, . . .

- ' .
4 .
.

1 - 37 Without using a oal{ulbtor give the display pi'oduced by the fol-

'

- . . V _ .
}'owing keysiroke sequences. Chel& your results by calculator.

>1)' 5 | |x « , 2 |9l &) 3 (4] Wy
4 [3] oY T 5) [&] lcus 6) ~ |o.| R/x
W, . ~
7 * |s] [ENTER, x2|  What does the stack look like after thts
. sequence? .
. - * . %
™ .
8 |5 | |ENTER] |x*] [+] . L 109 (& |
. | (S )
- ‘ - N
t
* . . ' ’ 7
Note that'the keys will tell which logic is used. A\r\f:H calculator has
no ENTER key. . ' R

: 32




1.5‘-4 L

\ . ’
. v . )
.l

EmE e EH @ wE e
EE waEmBE
0 p[oDin ] RN
Alnlals T .

10)

w5
15) D
o 5]

dete rrg'mc what the

N

>

18 - 20 ?y applying the functions to various values,

folloewing keys do. Be sure to include value\k\i‘k/e 7.65, -3, -9 T2.

18)  INT. 19) FRACT 20) ABS

-y . R .
.
4
-

’ é
’ ,your result against the

Calculate eich of the ‘following Check

~

21 - 26

A
| g
. MR Summ Sume fSEmR G

answer given. \
.

EXAMPLE: . s U7 o ' ~N
. ‘ . . AH keystroke#: E ‘ + l ‘ 7 ‘ ' ‘- ‘
' 3
RPN keystroke: | 5| [ENTER ‘@/*\

@@

\ ’ ¢ Answerl: 7.6458 'Y v
21) 8% Ans. 32768 22) 1.23>  Ans. 1.8609
1 1 ; S 1 - Y,
23) 16 ¢ 3 Ans, 0.2054 > 24) 16+ 7 Ans. 0. 0435
¢ [
25) 10° . 57~ Ans. - 218745 , (On some algebraic calculatdn you may’
» ‘ .
. ' 7
( find it necessary to use pa.rentheses around 5 .)
! * . . N ) 1y
; ) - 26 - 28 Now try your haéat the idllowit_ig monsters: ) _
. . /
\ .
| 35 sin 45° - . .
26) E_;Tr;__‘i_._ Note; the numerator is a product. Ans. 0.0001
T .y o
37y INT (107 607, - Ans. 53 :
* 1
On them it must

s will not accept this cilcu}ation
or it must be calculated as 5 + (ﬁ).

Some AH calculator
¢ : be reor‘dered to ﬁ + 5,
A .




~

§3.7 + cos 10°

28) ; -~ Ans. -83.4771
3 1
137 - —
27

The following two exercises provide useful short-cuts fox:rcomputa.tion:
B ( . n
29) Sometimes the wrong fumber appears in the djsplay. For example,

when you wish to calculat‘e a - 'b, b may already be _éisplayed.
» * - .

How. cotild you complete the calculation without stnj\in: all over? |
P

20) How can you calculate % start{ng with b in the display?
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S ~ "1.6-1
R
N ) | )
I P Problem Solving with a Calculator
- . ’ / L . ;
0 With the power your calculator ive\s ou, you may now attack with'
. g you, y

.

confidence and solve some complicated problems. You will qee';l paper

and pencil only to reco;i notes and answers. As you will see, however,
the calculator does not substitute for thinking. You are still in charge.

You will need to

2

° or:ganizé‘calc%ations so that you can carry them out on

~ your calculator
and if your prohlem is one related to measurement
T e determine units for the answer and

’ e * determine accuracy . i
% . ' -
»
In this section we will not deal with the latter two important questions. -~
[ . 4 ’ .
We will continue to Teport answers to four digit (rounded) accuraey*.
=

[ . EXAMPLE 1. 6-1 A simplified formiila for artillery range is -

. * 2
. . Vo“ sin Acos A .
R = 9. 8 (

*

Find the numerical value. (with-ut units} of R when

. Vo =31 and A=Bd°.

- J

Some c‘alculators truncate answers rather than round answers. Truncated
means that the rest of the Answer is cut n".. Thus 683.29587 truncated to
six digits is 683.295, the ,00087 mierely dropped. This is often called
-""rounding down". You should test your calculator to see how it rounds. Use
quotients like 2/3, 5/33, and 50/33. .

'




y S / 1.6 -2 )
SOLUTION: sybstituting ‘ .
[ . 312 sin 30° cos 30° ' .
R = 9.8 : .
/ « - : y .
Calculation yields 42.4618

" Such a calcuiation ‘is import‘:lnt but stx:aightforward. Others require an
experimental approach. ;

EXAM?LE 1.6-2 In EXAMPLE 1| we might wonder

what an{gle A makes R-largest. (What angle of elevation {

yields longest range?)

SOLUTION. We need only. consider th$ product

b 4 s ) . |
‘ sin A cos A (Why?) . |
. . |
. “Trying values yields : L
¢ . L o ‘
A sin A cos A | .
-30° 0.4330
. ‘ «40° 0.4924 '
» . 50° 0. 4924
60° 0.4330 -
s, . This suégests trying A = 45° (Why? )
. .
45° .5 .

Trying other values suggests tdat this
is the best we can get in the range 0° to 90°.

) .'Ofte'm it ;implifies computation to use storage capacity of your calcula'or'
- -
to evaluate expressions in which letters appear more than once. In the

e
following example, we assume a calculator that has at least two storage

L]
.

4 L3

registers Rl and R2. To store 5 inRl and 6.3 in R2 ’'the following .

keystroke sequence could be used: \

36 .

e




{ 5'9T01L6_]ﬂ3s'ro[i

- / R
- This sequence of keys is appropriate for most algew RPN cal-

*
. . culators.

To recall the number in Rl,‘ you need only press ~—

1 |

. | |
- ' ) RCL: L}—}

_and in this case the 5 will seappear in'the display.

1
-

EXAMPLE 1. 6-3. _ Evaluate x? ’ 3xzy + 3xyz + y3 for

-
?

x=3.7 andy = 8,6. .~
' SOLUTIOI;I. ’ If you attack this p;'oblem directly,
you will be keying 3.7 and 8.6 each several t;mes.
You can save some of these keystrol;es by first storing
xandy. Follow the pr&grar;m for\the kind of cgiculator

you use.

On some calculators each reg‘i's.ter may have ai‘ two-digit designation.
In that case to store 5 in ROl would be keyed

- PpEEE

37




elal=InlolsinlzEn

. . or ' \ N
Asenm‘ /
AH x> RPN -~

= ¥ - deak
rRcL| |1 y"} 3 ReL| [1] [3] [y
o ' 7~ v
+ r‘ ' / Vo
, -
| ' .
= X 2~ ¥ t 2

(g (1] ] [2] =%  [red [1)[2] [7] [Rew
xl) lreyf (2] [x] |5 2] [x][] ]

)] [+]

L _

+ 1.
( | Rer] 2] [¥¥] [z Ixy’ re] |2|f2] [y*] [rcL
x| [RoL|.|1| x| |3 < | IE x]
| +
+ ¢

1] '."3 ‘ . ‘ . . *
ey [2] [ 3] & RCY |2 3] "
& . - )
/[ 4
L)
'»/ You should reach the value 1860.867
ES M >ﬁ-ﬁ\-.

At each of th::;\"pqints the |ENTER| key is omitted because the unary
operation key substitutes for it,

*x .
Beware! Do not confuge the X apd Y registers with the x and y in

the polynomial. The key operates on numbe‘lrs in the appropriate

calculator registers.

.

N




I ' . 1.6-5'

3.

‘ ¢ . ' N -
™\ * \
L) .

In solviné con:lplex‘proplems like these you will need to be very

careful. Here are,some suggestions which may help:

N

(1) Think through you;‘computation before you start to key numbers
v . \’

- . [}

into the calculatofr.
(2) Try to orgamze your computatlon in parts such as terms of a poly-
. LN
nomial or the numerator and denommator of a fraction. ‘
(3) If you’ feel you ‘;i}l be lost-computing the ans.wer' to a complex problem
o in ‘one series o;',keystro,kgs, take it part by part, Fbrecprdin'g partial
* answers.. You may then combine these irito a final solution.

i4) Sometimes (a.s- you will see in the exercises) ajgebraic simplification

of an expression to be evaluated will also s‘i'mplify ,computafion.

i

. Exercise Set 1.6 . )

1 . 4 Evaluate'the formula R = Vozs9i.n8A cos A _ for R/xiéing the -
;iven values o} Vo and A. ) ///

1)  Vo=1200, A= 46‘? ) 2) Vo= 1;16, A = 40°

3) © Vo=100, A-=50° ~4)  Vor£375, A= 90V .

(You may wish to think about the 1coults S&f exercises’']l - 4 as they re-

late to the physics of projectile range.) - R

-

5 - 9 Using one of the two conversion formulas for Celsius and Fahren-

heit temperatures, P '

' C=,%'(F-32')'"' F =

39




T v
" answer the, following: - i : -
.. 5 €=100° “find F ." 6) - -Convert 32°F . to C.
) ’ ~ "' ~‘ ‘ - . . ' ’ ‘ ' * . . .
. 7)_ Change 68°F to C - "~ 8) Change 98. 6°F to C.

_ 9) . Find by experimenting wherr F and € are the same.. 3 R \

10) | - Now check your answer to exercise 9 by algebra. (Sét F and.
* w - }a', . . -
.. C each equal to x in"one of the two formulas and solve for x.)
) L 4
II'-14. A formula.for tr’ia.ngle' area that y".ou 'will be-able to derive

later is : . Co
' ' A= d -3 22
PR I L
Find A, given the Yollowing values: " :
. Y - - O . =710 T - o
o 11) 31-2, 53-5, AZ 50° , 12) s 10, 5, 8, AZ - 60
L ~ o . - o
l?) 8 = 3.72, 8y = 5.8, AZ._ 38 14) 8, = 147.3, 83 = 62.1, AZ = 12
h . . e N .
. ~15-19. If an object is h meters above the ground, the timg, t, in seconds,
3 ' 2h
that it takes to fall to the ground is given by the formula t= 9“8
Find t when: - . & .
. A ‘ [ 4 ) . 0
15) h = 147.2 . . 16) h = 3472.13
17) h =1.23 18) h = 43.278 -
lé-) Solve the formula for h and use your new formula to find h when
- ” .
t=10 - : - ..
7 2e-23. In-a right triangle whose legs are a and b and whose hypotenuse
. ' : 2 2
is ¢, you know that ¢ = Va“ +b )
N . * * L "~ ¥ . . (—';‘”\
L ,, _— . N . | “,
' Averagé human body tempetature. . S v K
. . . A ' "
\) . L4 /LJ . . ) . N . .

» "
w . - ‘ M .
- ..
ERIC . )
PRt povansn e . ! . .
g ' . 3 -,




Find c vien

26) a=5 andb= 4 21) a=10.35 and b=15.72 O

22) a=10.3 and b=11/7 s 23) a=2.3 and b= 18.9

24-30. Evaluate when x =3.7 and y = 8, 6.» Store these values for x an@y(
v W i

. , ‘ , ,
24) x% 4+ 2xy +y 23y, (x+y)

26) "xz +”'yz - 1 - . 27) (x;y)ay ' Gl’ .

-

a

What identity to your answers in e:;excises 24 and 25 support?

What do your answers in 24, 25 and 26 suggest?

What identity does your answer to exercise 27 a‘x{‘d the answer to .

¢
e

. . M ’ w o Y
example 3 “on pages 1. 6-3 and 4 ‘suggest? \




1.7 Programming Functions: 1

e - 5 . '

In working the exercises of Sedtion 1. 6 you should have
v - . . '

. found the calculations repetitious. You were following similar routines >~

over and over, with only the numbers different. In thissection we will
develop a short-cut to reduce such work..

- . EXAMPLE 1. Give a keystroke routine that will

start with a given value of h and calculate t

by the formula> B )
, ' 9.8 |
I ' SOLUTION A
- & ¥
AH ] RPN

B ke?'\n h, then . key in h, then , ‘
| |12 ' ENTER .

sitolt-(18il= fz g | X

L f . .

0% P CRIERIE:
T E |

~ '

Notice that orice the key%r?ote/s have been'worked out it requires
- ‘

.

no knowledge of the function t follow them. With these instructions you

could give your homework exercises to'an elementary school aged sister

. . T . [ /
"y or brother to calculate for you.» For example, given the h value 1\0.

I

N they would key ™ | 1 [OJ and then the keystrokes for your calculator,¢
'E-A - . e v -

giving the resulfing t value, l;~;1286.

-

. 2 - &




Still better, you can assign this routine to your programmable

7 Vca'tlculatvor. Here are the general steps you can. use to &ccomplish
this: ‘
‘ . } (1) Set y:)ur calculator or ;:omputer to record a program,
’ (2) Key into your calculator ':)r computer e cal'cula.tion steps -
' ‘Yalong wit\h any instruction steps necessary 'tos):dur partic.ular
- calculator. ) _ , 7
(3) Set your calculator or computer back to} calculating mode.‘ |
(4) If necesgary reset your calculator or computer to tl:e begin-
'E ‘ ning of your program. S, . . |
oo (5) - Enter your given data. ' d ‘
(6) Run the program. . _ . : )
- .
g ‘ - For —acflditional exercises of the same type, you then merely repeat steps -
4, 5 and 6 o T

Each of the many calculator or computer models operates differently

8o it is not possible to lisaall the special instructions required to carry out

- -

- ~

the six step routine we have just giveu "Because they suggest the kinds of

-

- Y
special differences you will meet on calculators and computers, we offer

. three examples here. You should study them to see their form, ‘ but you
. ) . . ‘

should concentrate on the specific routines for the calculator or computer

-—

you will be using. Recall that we are programming the calculation

. -

2o Yo .
- 9'8

-

2 L4 >

%




'g# .

¢ -

TI-58 (a typical AH programmable -calculator)
—_ : LN

]

-

1., OFF - ON This clears the calculator of previous prograi’na.,‘=

LP:N f’ r\

LRN sets t}us caltulator to record the program
+ The dtsplay is 000 00

“° 2, X 2 I These are the 'calculatibn steps. (See th;a
o "o SOLUTION to EXAMPLE 1 on page 1.7 - 1.

T 2 9 -1 8 - As you depress each key the calculator display
| : - will move to a new step number
' o . L _ 001 00 upto 008 00.

s (0

[} f
. R/S| |RST R/S is required to stop the program and dis-
» . play the result of the calculation. RST will

return the program to 00. )
‘. ™~

-

3. |LRN ‘ ' This key now retyrns'ﬂ'l‘e calculator to normal
: operation. The display is 0 .

RST sets the calculator to run from step 00Q.

v

5. Ke)‘rﬁr’-_hi.\f//;,

6. " R/SE % ? Q R/S then activates the program. When the cal-
. culater stops, e display will give the t value.

% s

. . .p ‘e v

., ¢ Tofind additlona.l pa.trs (hk, t), repeat steps 5 and 6. By inserting the RST .
-, )

A

N after the R/S at the end of step 2, .we don't need to repeat step 4 each time

Note: On this. calculator RST plays a d}'fferent role within a program

‘ o s .‘
(as i‘g step 2) and outside- (as in step 4). Within a program RST returns the'
e ’ .

calculator to 00 and contines to run. Outside a pra%ram RST returns the -

; calculator to 00 and stops-there. . . o .o \

o ¢ ’ -~ . ‘ .

[ ) " i ¢ \ . .

* Some calculators, usually with aC designation - as TI-58C - have’ .
continucus memory and must be cleared by other means. See the owner's

A ‘ manual §° ' ‘

B

' : we rur' the program.
.

' .




HP-33E "(a typical RPN programmable calculator)

p . 1. OFF - ON " - This Slears the calculator of previous pro- s
, * * grams. . . ‘ T 7
- - . . N ' - J .
PRGM . PRGM. sets the calculator-to récord ydur - '

program steps. The displfy is 00.

A .

Z/ ’EN.TERH & ' Thepe are the calculatiop steps. . As you de- -

— ’ press each key the display records the step - .
2 ||¥ - - number and, the location (row - column) of + I

’ N 2 9 the key(s) depressed. or exzmple, after
 t9|l*118{]:]" ENTER is pressed -31 is displayed: .

3 j . Dl is the step number, 31 the location

f x (row 3, key 1) of ENTER on the keyboard.

Note how the last two keys are merged into s

one step 98- 14 02. This saves program - l

. " steps. - N, -
. \‘ \ , ! . 01‘ 4 . » L] P

3. RUN . _ The calculator is now returned to normal’
perahqn, the dxspla.y is 0.00/

: 4. |g| IRTN ' The RTN key sets the program back to step
' . . e
00. »

v’

. Key in h (.- .

) [ N .
6. . /sl . . Thxs actwates' the progra,m On this calcu-
lator we did not have to key gnother R/S
' . into the program because all unused program

. B _steps are-pre- loa.dedL with'steps that return

“the program to step 00 and stop it there.

To find additional pairs (h, t) repeat s.teps/sl and 6. On this calculator it

~

is not necessary to repeat step 4 because the calculator itself resets to

- . 4 . . .
step 00 at the end of a program run. . '~ )
[ L
1 -
; K — - ' . ‘ . ,
| ; * ’
| On this calculator, as on many others, many keys have two or even three

s. Here the yellow, key assigns ﬂrme second role & to the
key. The blue. key would have assigned x2 to the same key.

45 \' ’ ' ‘




.

.
.
. .
.Q , ’ - /
. B - . , & ‘
. .

TRS-80 (a ":y'pic‘al c;omputer prograrﬁming -;n BASIC) : .

1. . OFF - ON A prompt_& is displayed.

2 - ENTER . Thfn,?x;epareg your computer for ) '
¥ . - ' ' -, further instructions. You must press i
‘ [ T "« <+ ENTER at the beginning of your program {
P R T and after each step. |
-3 AUTO - L - This SIaces you in automatic and mumbers
e \ e T »ths steps in your pmgr‘@.rﬁ. It first prints
; . . 10,‘ ready for your program. : ﬁ
" . "4, 10 INPUT H " _These are the calculation steps.
o, ’ e Eazh time you finish a line and - ..
’ 20 T.= SQR (2%H/9.8) press ENTER the computer . . B
. ST . . » goes to the next line and prints
3\ 30 PRINT T ihe next number. )
5. BREAK . — This takes y,éu out of q.ugorria'tic and puts you .
i ) in run mode. v -
. N . 5 4
6.  Type in alue of "HAJ -~ . .
' ' ypge the value of 'Hy/ - .
/ 7. Type RUN This activates the program. '
3 - . - ‘ 4 . . ‘
- To find additional pairs (h,t) repeat steps 6 and 7.
- ‘Q -
i You should familiarize yourself.with the p\rocedures for entering

4 s - -
| and running programs, but the more important task is developing programs.

r -
[

. - r . .
! Here are some suggestions about hbw to doethis: .

-

. -
(1) Remember that the program merely records what you would
. » ~ ‘
)

* have done in a calculation that is"hot programmed

- s a2
_ that change in the computatioﬁ.(ln the example this was h.)

’

|
' (2) Think of yaur calculation as always starting from the value(s) :




- . * (3) Key into the program the steps following (and not in- .
R
cludifig) the step that keys your starting value (see auggestyn

-

’ - 2) inte-the display. (On an RPN calculator doﬁ't forget ENTER

when it is necesgary.)

(4) Be sure, if your ¢alculator or computer requires it, to

M~ complete your program with |R/S| so your calculator or ‘computer .

*

-

“ will stop to display the results. @® .

Exercise Set 1.7

-

1 - 6.Key inté.'youn calculator or computer a program to find t, given 1
. .

h, -by the formula 2h - !
1 . . . t = b .
; ‘ ‘ '&9:8
_Then ¢alculate t for the follewing h  values- . B .
1y 15 //’//z) 100 o .
" 3) 1000 ) 4) 10, 000 ;o - .
5) 8840 (m inht. of Mt.”. * 6) 1609 (m ina mile)  °

- : Everest) o

7) Deve\lop a keystroke seqﬁencé't"o 'cha:ng'e any Fahrenheit tempera-

ture into Celsius by the formula

Y * ! ( -
.

K]

(F-32)

o|uwn -

. ' (Don't forget to start your calculation from F.) -

’ l
3
- ~

8-12. Program the calculation of exercise 7 and use it to convert the fol-

lowing temperatures to Celsius: -

e

8) O0°F 9)  90°F




Pid

— | A CLT-1

10) 50° F 11) -40°F

’ , . e . e
12) By experimenting, find when F = 2C, that is when Fahrenheit

»

temperature is twige Celsius tempeiaiure.
. . .
13) . The sales tax in Erie County, New York is 7%. Develop a keystroke
‘sequence that will calculate the amount of this siles tax. (Do not

bother with rourtding your answer. )

- i

14-18. Program the calculation of exercise 13 and use it to determine sales

tax on the f\éllowi'ng purchases: ’ ”

14) $500 15) $45.3
- 16) $299.95 - - i 17) $2.79

<

'18) By experimenting, find a pyrchase price that will give a sales

v tax of $1.00.

P —_— -

P2l




P.r%ummiiq Functions: 2

L §
/ In section 1.7 you learned to programxyour calculator or computer

that section you were restricted to single imput-single outp&t rou'tjnes,

. » s
Now in this section you will learn how to handle more than one input or

output.

On a calculator the key to this problemn and the key to press is:

-

R/

*

-

This powerful key plays the following important roles:

-

a program if the calculator is idle or stops 2 running progr'am.

_*

¥

-

——

to receive information dr to give information.

We will consider how this works by means of examples.

A

4

¢ for entered values of a and b,

the formula

t

=

Wi

1, When-th{ calculator is.in operating mode, it'eithe;' starts

- so that it would carry out computation routines by a single keystroke. In

2. When it is keyed intoa program it stops the program either
R

v

E'XAMPLE; 1.8 -1, Develop and run a program to evaluate

.



-
-

by TISS8 : by HP 33E
OFF - ON _ . OFF - ON
LRN; . a would be keyed PRGM
i before the >
S Ix | + program started g x "
*. IR/S; Here the calculator - _* |R/S§] - ‘
-~ - is<stopped to re-
ceive b. L
x2 ! : g x2 i
- ' Lo
= | + /
__J g
0 ‘ f||0x
R/S| - L .
LRN ZRUNZ
. ) d - ——
Here is how these progni:ns would be run for '3._ =5, E = 12 \
RST Resetting the program 1 g RT '
to 0. ’
5 | |R/S © . Enter 5 and start the 5 | [R/s
’ program
The first part of the program runs until it'reaches / B
R/S at the stE marked * in the program. It stops with . i
,the display reading - 25. ' )
P ﬁ - -~ . . \,/j

~ 1 11]21 |R/S| Enter 12 and restart Lyl 2] |rss

4 .

' : o :
Either calculator will now cemplete its prog¥am and display the c value 13,

2
6

:;(} - \




1.8-3

-

You will develop other ways of carryin t this kind of multiple

.

input program in the exercises. We now consider & problem involving

multiple output. . . 5

EXAMPLE 1.8-2 Develop a program that will calculate

and display sales tax (at 7%) and then total cost for given
v . T -

purchase prices. ] ' «

TI 58

OFF - ON*

STO 0 . Stores purchase price

e
e

Calculates sales tax
»
Stops to display tax

Adds on purchase price to give
total cost. - .

.
-

LEN

\

Running the program for a $92 purchase

- ¢ IRST .9 2. R/S

. o

The calculator runs to the first |R/S|, and stops there

A

to display the sales tax $6.44. o ‘ s -
; ‘ "

R/S The calculator completes the program and displays the total .

~

.cost $98. 44,

[

*

* . - ., NG .

On this&alculator there are other ways to cléa.i;{progra.ms and reset the
prograsi to 0, but we adopt this simple prﬁcg ure. In fact, new programs
may be keyed right '"over' old ones. for the new steps replacg the old.

H
2




1.8 - 4

— .

HP 33E .
§ ) \ v
Storage could be used as in the TI-58 solution but instead we utilize

. v
L4 \/ e 4

the operating stack to solve this problem. ' 4

- OFF - ON*, PRGM

|
! ’ ’ i ‘

ENTER ENTER, : Now the purchase price is in -
— > Y, and Z registers. . X . |

0| |7 X (or )
. . Now sales tax is in X, pur-
. chase price in Y.

. '——j . . . —
c. R/S, Stop to display sales tax
: L
+ . : Adds sales tax and purchase
— price.
.
Running the program for a $92 purchase . ' A

g } RTN Resets to 00

3 .

a

| 9 2 R/S

. Now the calculator displays the sales tax $6.44

R/S The calculator completes the program and displays the
— total cost $98. 44,

.
.

On this calculator als¢ there are other ways to clear,programs and reset

the program to 00, t we adopt this simple procedure. In fact, again -
new programs may be keyed right ""over" old ones for the new steps re-
place the old. . |

Q 52 !




your program.

-

. :
: . .- 1,8 -5
| «
. .
ENTER; AUTO . You are now ready to yvrite ] .-

INPUT P

.
'

AR 20 T=.07% P . Computes tax l
30 C=T+P %ﬂds tax to purchase..
. 40 PRINT P, T, C . ) Prints purchase price, sales . l
tax and final cost.
BREAK : I | . I
!

. - R'uxming the program for a $v92. purchase Cen
92 e . ~
- RUN |

! The microprocessor prints

-~ .
92, b.44, 98.44 . : L/

b

Exercise Set 1.8 : . )

l.- 4 Program EXAMPLE 1. 8-1 into your calculator and use this
program to find c for the following: T ' .
. . . . .
1) a =23 b= 264 "Z) a =45 b= 24
3) _9_._=45,.E = 336 4) a =17 b = 24
’ ’ | >
5-9 For a =.45, there are five othe;' values of b that result in

Pytingorea.n triples, that is regults for a, b, angd ¢ ait in integers.
R b - =

L]




%

H
o -

Find the b and c¢ that completes the (a = 45) triple‘ for E in

each of the foilowing ranges:

-
. P

"5) 25 < b < 30. ' 6) 60< b< 65
. - - 1
7) 105 < b < 110 . -+ B) 195°< b < 200° .
-— — - . o — -— ) . . $ .

9) 1010 < b < 1015 N .

10 - 15 Pr.égrarr; EXAMPLE 1.8-2 into your calculator or computer

L]

and use this program to find sales tax and total cost for the following

. #
purchase prices.

. 3
10)  $34.95 ' 11) - $1.67
12)  $2995 _ 13) 9632, 50
©14)  $99.95 15) $100
16) - How could you modify the program of EXAMPLE 2 if sales_tax
went up to 8%? Clearly you can start over and reenter the entire
‘ . M ' /~l
program, but you may wish to experiment with calculator keys. -
: . " in LRN or PRGM mode to ma}kebtllxe necessary key éhh’n‘ée.
. You will need to determine how the follofing keys work op your
calculator: o ' ' ' . SRR
' - L X .
. ~
- . -~ J ' ) ’
#e . ‘ )
. On calculators that display four decimal digits (like the HP 33E) you
~ need to exercise care here. Such calculators probably do not round
up but either round down (truncate) or. round to the nearest “value.
Ygur best procedure is to reset such cdlculators to display more deci-
mal digits. On the HP 33E, for example, to set three decimal places |, -

..
~ in tl', display press |'f | |FIX 5. -

a2

" \(o “ L 54 . .




“s ingle stip

back. step

'éand on t}‘xe TI 58 . .- /

d ’ .
Zn. j \ insert

| 2

Bl

an R |DEL4 . delete , . \

. Q

(for algebf-aio %talculators or domputers only\)\}n‘EXAMPLE

}.8-2 you had to store the purchase price because it&lost‘
A :
wh‘you caIculate sa%es tax. Show how you gan avmd storage

by calctﬂahng total cost from the saleg tax. | : If"purchase

,

price is p, sales taxis .O7p and tojl cost is Y 07p. -Deter-’

, mine' the number you must multi'ply yb?p by to get 1. 07p\)

:

.c

-

18)/_Jﬁppose you were a householder in an area where dxfferent com-

. e

.

-4
\ - munities in whlch you'shopped charg'e\d\dlfferent‘sales taxes.

gThls is fa;riy common near state or even county boundaries. )
&’

' ;Develop a sales tax - total gst program so that you can enter list

v

prtce and then{is/dax rate to produce sales tax and total cost.

\ .
(Hint: an@asy way to do this is to use program storage ). 'Use

P -
-

’ “your progMm toﬁcomplete the followmg table:

-~

\) L.i\ s [ d




.\_\.—*,/ -
hY « 4 '
, .
. 2
. 1.8-8
ot ) Y -
.. list prise/ tax rate tax cost
; T ; , ; =
suit .8 $137.95 6% ‘ ) N
' |
overcoat . 84. 50 8% ~—
) i / *
shoes - 31.45 % -
hat . 18.50%7. e . .
= T =
TOTALS PR , ,
. - k4
‘\
—~—— . v T
<
- ~ v\ ’
. ‘ )
-/ " _
b #
]
- ‘ ' “r‘ )
a ; ’ -
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1.9 - Programming Algorithms 1.

.
¥ -
. -

In sections 1.2't0 1. 8 we utilizethparticular calculators to solve

problems. In those sections we introduced some ideas that are‘quite

generi.ﬂ and apply to programmable ca.lcufators and computers bf many

types. The method of entering and running a program to evaluate an

.

often-repeated calculation is, for example, common to all progpe’rﬂmblq

calculators and computers. Al the same time many“of the ideas were
" > a2 P , Nandl

-

specific to the particular calcu}la(ting device we used, In this categor'y are,

-

, for example, the different operational ms - AH and RPN - the speci-

fic means of switching into program mode - PRGM or LRN - and the key

for 're_s.e.tting the calculato;' to run through a program agai'n - RS.T,_qr RTN.
' From now on we wish to provide more general- instructions vc?hic}:
will apply to any calculator or computer.- It is then usually quite easy to
translat; the given procedure or algorithm int; a keystx;oke routine for your
+ particular calculator, microprocessor, or computer.: We will work tlirough
a‘n examl;le to show ho.wrr an algSrithry\is arrived at and then hc;w it may be
translated into specific routines. In the examplé and in subseuquent%o:"k

ou will be led to develop algorithms.. Transl'a.ting them into keystroke
you > . Yy ,

sequences will be done with the guidance of your teacher.

-

b O 3

EXAMPLE 1.9.1 Find the real and imaginary coef-
ficients of the product- ‘3 + 2i)(5 + 7i)
SOLUTION: By standard algebraic techniques

we have _ ’ - . y

57




e 4 - . s DR
- -

. ‘ " C \l-9-2 -

. ) [}
a . . —
~ - : ‘ )
. - : ' »

(3 +2i)(5 + Ti) = 15 + 31 + 14

-

s L .. and, ‘since ‘iz_é -1 . .
, . ' P ETYELT .18 = 1 +31}
' ] - . ¢
N . Rpal coefficient: 1 _ *,
. » .- —~—
- v - - \
~ , Imaginary coefficient: 31 - . 7

.
—EXAMPLE 1.9-2 : Find the real and imaginary coeff
ficients of the product (a + bi)(c + di)

SOLUTION: (a +bi)tc # di) = ac +adi'+ bci + bdi2

oL = a.zj-(a.d +be)i - 'bd = (ac - bd) + (ad + be)i *
Real coefficient: ac'- bd ) .
7?\(: " Imaginary coefficient: ad + bc ' ’

_ Notice how ‘the second example generalizes the first. It alsp suggests an

- -

algorithm for ca.lcula.ttin'g the real and imaginary coefficients of the product

of any two complex numbers, a + bi and ¢ + di:»

o

~ EXAMPLE 1.9-3 ) Multiply‘two cbmplgx numbers:
éfve‘n a, b, ¢, and d. Finding e and f where

e +.fi = '(a. + bi)(c + di):

. ' Solution: Notice that each of the numbers a:, b, ¢, and
. & -
" # d is used twice: o ‘
' s : first use of d
. e = ac - bd‘/.
_ ’ \a_a/second use of d
* f = a be B

v

. Therefore we need to store these numbers in memory.

e




. =Y
MULTIPLYING TWO COMPLEX NUMBERS

1. Remember a, b, ¢, and d. (In a computer, this could be done

< - .
with LET commands, in a calculator with keys such as STO.))

2. e «— ac - bd; d{spl;y the resnlt*_ I
-
3, f J;-- ad + bc; display the result
4. STOP ! | . ‘
A good algorithm hz;’s certain features: .
. ~

-
® variables are initialized (or introduced)
e . ' .

° kalculations are made or decisions aresreached, based on

the vglues .of the variables;

1

° all Essibilities are accounted for

o information is displayed or printed

o the process has a way to stop.

v

A verbal algorithm is just an abbreviated statement of the steps
we use’to solve a probleni. For us it will play a role between a complex
problem and a keysfroke sequence for our particular calculating device.

For the algorithm MULJIPLYING TWO COMPLEX NUMBERS, consider

now how the steps could be translated intq program keystrokes.

- Pl

s

[

-—

k-1
the arrow notation means ''replace the value of ... with the value of

nf ac - bd.

>

’

4

" . Thus, e4ac - bd means replace the value of e with the value




\ \ ’
...: - 1.9 -.4
1. Remember a, b,'c, andd. ~ .
. “.‘ L 4 .
TI 58 HP 33E TRS-80 / Con
. ke ‘
ST6 00. (Ro=2a) STO 0 INPUT A, B, C, D
R/S ' R7S .
) . ) .
_ STI'O Oglj (Rl = b) \STON‘ 1 E |
' " R/S ” R/8 S <
’ ) 3TO 062 ( 2‘=c) : STO 2 ‘ ”/\ - i
R/S R/S
STO 03 (R3 =d) - STO 3
- o~ . > e re PR | - - s -
H » ‘_" . { - -~ 3
2. Compute ac - bd; display the result.
:
RCL 00 . RCL 0 _ R = A*C-B*D
sn - | ]
' - % RCL 2 ¢ PRINT R .
- *s ! -4 [
. RCL 02 . X .
- : . RCL 1 )
. '~ N . !
RCL 01 . . Ra’L 3 _
x . E . > ‘ . x~ * R L4
RCL 03 — . ‘
« . »
’ . - ~*
. = R/S
L 4 ‘ 5
R/S . - h v ,
[
% . .
We will use the - notation Rn to denote storage register n
- € LN

w . K (’;(/




4 [

.- 3. Compute ad + bc; display the result.

-- TI-58 . ' HP33E ~ TRS-80
RCL 00 RCL 0 I= A*D + B*C

-~

'RCL 3 " PRINT 1

X END °

. Stop

Last commangd in 3 Calculator automatic- * Last command in 3

* ally resets to 00 and
(RST). stops

Exercise Set 1.9 -

} -4 What do each of the following verbal algorithms calculate ?
/' ’
1) | (1) Enter a, b
, 2 2 . !
(2) Compute Ja“ +b"; display the result
(3) Stop ‘ , :
"2) (1) Enter F
(2) Compute % (F-32); display the result

(3) Stop

"—I.-r:———
By including RST in your program, you will not have to key this before
each run; however, you will still have to key RST before your first run.

Q s | 61
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1.9-6

/ ‘3) (1) Remember p
N Note: We will use the
(2) t & .07p; display t ) notation x<— to mean
. e " compute x from what
(3) s «— p +t; display s is to the right of the
arrow.
(4) stop
4) (1) Remember a, b
' 2 - ’ Hint: How is ¢ + di
(2) c e a? - b% ‘display c . related to a + bi?

(3) d-<— 2ab; display d

(4) stop *

5) ' What is usually the last step in a2 verbal algorithm? (We will

.. -

L

see exceptiohs to this later.)

-

. 6 - 9 - Often we wish to replace dne variable by some function of that

s .

same variable. Thus we might use x <«— x+ 1 to mean '"replace x
» by x + 1" or "make x one larger.” Translate each of the following
. into statements beginning "Bleplace. o
—
) xe—2x 7 xe—1/x 4

8) X <— E;. 9) Xe—x -1

10 - 127 Each of the following verbal algorithms lacks one of the features

of a good algorithm (listed on page 1 9-3). Tell what that feature is and

give a atép~to make the program complete
10) (1) Enter x ¥
A{2) X 4«—x+1

{3) Stop

62 .




‘ ) - l._9 " 7 * )
11) (1) c 4+—a+b, displayc .
{2) stop

12) (1) Enter x, y - < . /‘
| B ‘ .

b ¢ e —— b — ~ ’
- (2) z e x +y, display ¢ )
. , . o
W3 .18 Make up a verbal algorithm that will:
1}) Find the area of a rectangle given sides £ and w. ‘ ‘ -
©14) Find the perimeterf and area of an equilateral triangle‘'given side s
15) Find the slope of the line between (a, b) and K, d). ’ {*. 2
16) Find the sum of two rational numbers a/bB and c/d.
e 17) Find the distance betwee‘two points (a, b) and (c, d). =
’ . . . X+ : A
18) Find the arithmetic mean (—zx) and geometfic mean (V xy) of
: - 4
.two positive real numbers x and y. - /4

'19) Using your algorithm from 17, write a program that will display

the distance_between any 2 pointriﬁ—t:heﬁz/oprdin?te plane’

. o

. 3 \( -
20) Find thg distance between (-4’: 5) and (17, -13)using your algorithm

. .
! from (18), write a program that will display the arithmetic apd

— . ~

geometricfnéan for any twu ~ositive real numbers. By copiparing

£

-

determine a relation between the geometric and arithmetid mean

L4

of two positive real numbers.

f

. 3 - p! ¢
* ‘ LT .

Save these algorithms for further work in section 1.13. -
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" 1.0  Programming: »Loops;)xd Traces
‘ ~ )

3
-

Many algorithms cont2ia loops; that is repeated series of steps.

4

The long division algorithm you llearned in fourth or fifth gra;ie is an al==
) .

" . 4 . ‘ N °

gorithm with a loop. You will récali that this (non-computer) algorithm

goei something like this:

2 .
1. Divide 23; 4876
- 2
2. Multiply . 23; 4876
.o ) 46

. .2
Subtract . 23) 4876
46
- 2
: 2
Bring down (the next digit) 23) 4876 .
‘ 46
i 27

T ’ '\j 21
(same as 1) Divide  23) 4876

3 46..
. ) 27

. 7(sa'fne as 2) Multiply

\
7. (same as 3) Subtract

)

and so on. Rather than repeat the same steps over and over'this algorithm

&
is expressed easily by a loop.

Divide
Multiply
Subtract
Bring down
Goto 1.

4




In a similar way many computer-calculator algorithms and pro-
- v : ' .

grams have loops to repeat steps or keystrokes. In the process \ksual_ly

-

the value(s) of one or more variables are change;! and the steps are re.

peated. .
- [ . '
EXAMPLE 1.10-1 Develop a verbal algorithm to generate

[ .
successive powers of a + bi, 'fof givena and b. Thus we

' IS g A2 a3 4
want to calculate: (a + bi)", (a + bi)", (a +bi), (a +bi),
R e{, each answer in the form e + fi.

SOLUTION: . We can develop this algorithm by'r;'lodifying'th,%

t y . b

-

algorithm of example 1.9-3. We "initialize'' by setting

c +di (of examp}e 1.9-3»=1+ 01

1. Remember a and b. -

2. c¢-1 and d 4'-—0
~»3. e ¢ ac - bd; ;:li‘s”piay e Recall these steps ' - -
d " from exercise 1 9.3 '
1 4. f 4 ad + bc; display ) '

5. 1If the power is high enough, stop

6. c¢+e and d ¢

- . . 7. Go back to step 3. '

.

Te-see how this algorithm operates, we develop what is called a
R ; .

trace, a record of the calculation through successive ste‘;;s.
ﬂ.

. )
EXAMPLE 1.10-2 Develop a trace for example 1. 10-1,

when a = -2.and b= 3. I'his/\w‘ill generate successive

powers of -2 + 3i.




. - -

e First, set up a table with all letters represented in the al-
. ‘ . ‘ / .

gorithm:

,_: la | b | ¢ ] a | e £ ’ .
e |1 ’1l-¢| | L

. Now %e,enter values of the program and follow the algorithm

steps:

1. Remember a and b.

s | b | e | a] e ¢

B I I A
2| 3 . :
2. V\c-e—l,a‘nd de 0 | | .
= ‘ | | a [ b I c | d | e l f l .
LT T
‘ 3. e« ac- bd display e ‘
St a | b | ¢ d e | f| Note:ﬁe(—-(-z')(3) - (3)(0) .
SRR l sl o lal | |
4, f«~ ad + bc; 'display‘f
. la § b | d | e | fl " Note: f<;(-2)(0)+(3)(1)
o |213 “1 o | -2 l 3l‘ I ' o
! ’ ‘. o * . E
v 5. if power is high encugh, stop
6. c(——e.and d<——’f | S - N
) - Ja b c d | e £l ° "
' -2</§\\{ g | -2 3|
2 3 | : - v
» ~ .
' 66




Ga back to step 3.

e «— ac -.bd; .display e=

e ¢— (-2)(-2)-(3)(3) = -5

! \\ Y L 213 -5

>

‘\‘\ - / -
\ 4. *. f «— ad + bc; display f’ )
! ’ “‘\ ’ \ /\ - ‘ |
- aw | b | ¢ | & |1 £ | Note:fem(-2)3)+ (3)(-2) = -12 l

. v 5 . :
2l || | 2|

7 | 23| -5 -12 . I
. We have now calculated (-2 + 3i)2.'= -5 -12i \
5. If the power is high enough, stop -
] . - . ¢ .
6. ce—e and def — . - -
a | b |l al ¢l %
2 |3 |x| o| 2| x| €. : :
K - . . ¢
2 & | -5 | -12{
L P "e, ?-5 -lez Y l )
-
Of course in developing 2 tr:ace, the table would only be drawn once. ’
Through (-2++ 3'1)4 , the complete trace would appear as:
- 1 i /
}‘ a b c d. e f =
) 3 1 0 4 ﬁ 3 —> (-2 4+ 3i)l = -2 + 31
; . . 2
_ -2 3 5 12 = (s2 +3i) =-5+12i
| CLoe s |12 ] 46| 9| ==> (-2+30)°=464+9i ]
| . N o . B ' . 4 ,
: 46 |- 9 |-119) 120} =—  (:2+3i) =-119 + 120i
‘\ N v * - ,
| . .
|




-

Quite often a 'iragé step like é‘tem/made subject to automatic

control. r e
.
*

EXAMPLE 1.10-3 Develop an algorithm that calculates

-

.y 1
@ +bi) a5 bﬁ'f'i for given a, b, and n.

\ 1. Remember a, b, and n. ' '

.
>}

2.'c &1, de—0o, kes n-I'

.
o ‘ -
3. e+ ac - bd i
4. f e+ ad + be ' . \
" 5. If k ="0:display e and f and stop .

6. ce—e, de-f, and ke—tk-1

[

7} Go back to step 3.
p »

You will be asked to develop a trace for ithis example in the exercises.

-

-

. o N

Exercise Set 1,10

-

- .3 .
1) Develop a complete trace for {1 - i) sing the verbal algorithm « /

»

of Example 1-10-3, Note that initial valles are a=1, b = -1,
: .

n = 3. Thug, after step 2 your trace will be:
)

la| b n] k) c|dalel] ¢

T T
2) ’ From yout trace in Exercisé’“'l, give the valu of\(l)i}:s/; ,
3) Check your answer in Exercise 2 By‘ multiplicatio

B I

i
1
i

p
o

Develop a complete trace for (2i)4.; Hint: a = b, b
: . L .

= 1
v

65
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el \ﬂ‘ Lin-e

-~ .
. )
. - ’ - 3 o ¢
po 5) . Develo? a‘compléte trace for (-1) . Hint b : .
! a . 1 ot

- v" P
6-10. In these exércises you are asked to translate E}ample 1.10-3
- .

ve?lal algorithm steps into calculator ‘or computer steps for the

]

" dev1ce yqu have avallable Exercise 6 is worked out as an examiple.
. : -6) Remeinber a, b, andg (Algorlthm step 1) ’ -
. .
. HP 333: STO. 0, R/S, STO 1, m STO 2 (Rj=a, R;= b,R2= n)
Al L [y B
. 4 & . N
T1 58: ' STO 00,R/S, STA 01, R/S,-STO .02 (R = a, Rl b; Rz= n)
. , 'TRS-80: INPUT A,B, N . ( . T " Y
" 7). c &1l de 0, ke—n-1 (Algorithm step 2) e
- - " N
C . - \ .
. . For calculators use R3)= c, .Rq: d, R5 = k. To calculate and store -
T, . . ' ¢ ) 'S l‘ . %
. ' k use the ,s‘ienge: o ) N S
- ] § '. { e . : '
o . ‘HP33E: }1 2, (why?), 1, -, STO =5 : ’5
L" TI 58 KCL;z(hF%:\;'x sto 05 ‘ ’
- ) B . : Wy o), ’ r Sy ! - .
X A . o ) ) : ' T .
E . TRS-80: K=N-1 .
% e - o o
i ‘ 8) e «— ac - bd (Algorithm step 3) ) N
L . " - 4 P
| « o For calculators use R, =e S o
\’ ’ .‘ [ X :‘ “
9) f «— ad + bc (Algorithm step 4) \ N ;.‘,
- _ v - . ) \ ﬂ o !
- - For calculators use I%?-.: £ o L -
. 10 ce e def, andke k-1 (Algorithm step 6) :
N L / b3 b
b‘% 1Y Go back to step 3. /(Algorlthm step 7) Co
. . q + ', Beware: Algorithm step 3 is probably not progfam step 3. .
e e ' .; v . (qu calr,ul;tors use |GTO| the appropriate step nimber,. For mxcro-

. ) proceuors us? GO TO the approp)-latc line number: ) J

M i -
) . &a . »
1]
) .
.
A [
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1.11 -1
- t -
. 2 1 ‘
1.'11 Decisions, decisions, decisions - ) \

A}
’

.« .
In the eéxercises of section 1. 10, you translated several verbal

)
”

) algorithm stel;s into program st'ep_s or key-strokes. In doing so we

. T A
' ) carefully-avoided the program step for looping and the program step for-

making a decision. You will be asked in sec}io\n\‘. 12 to refer to the,

- ) * ’ . ) .
operator's manual for your particular device to see how you
- : / Y

r

would program

. l.oops. In this section we address the problem of miking decisions..

-

!

l Computers and now calculators are ofteé referred to as "thinl;é:g
machines. " You may already have been imp;essed, at the ability of your

+~ device to "think'" its way through complex calculations. In fa2#you must
L3 . .

-

N L4 .
things you cannot do on your own, For example, your calculator can cal-

; g admit already that {rour calculater is ''ahead" of you: that is, it cando
| ' culate {n am instant °the'sin.e of 37° to many §(gits of acquraty. At this

l ) " f point‘i our education you pr'gﬂa_ably cahnot ¢alculate that value at all!

most in’i}ressive thing your calculator can do is make de-
¢ .. <

| : ‘éision In doing this it comes closest to mirrorifig (if not truly duplica-
an thinking. Ofgouyrse the decisions yourrcalculator can make
. ' - ) e 4

!
K -

I Y- Lare "simple' ones. Still many psychologists claim that all decisions, even .
the n@t'complex ones, may be reduced to similaf simple decigions.

)
)

P -

L
S . ,~'k \'/"J.. S
You will bw in the exercises to review“yotur operator's guide %‘o‘dé-

f termine how your bwn works. sHere we delscril.)e two rﬁéthods, the first

\
'.
N .
[y
-

Q ! ' 7(’): .
o v

~ L . Ny L,
. . FPEach computing dexlce has its own special way of processing dggisions.

W




»eo

’ s g e

111 -2 -
7z
) common to many calculators, the szcond to many ;niéroprocessors
. and computers. ; oy
‘ , : \
. ° . DECISIONMETHODI SKIPONFALSE - .
AN | (This is a common calculator decision method. ) ‘
) The calculator has one or more decision keys. - The commonest
one is_ |x =0 ? , .often labeled without the question mark. Other de- \
. " cision keys are: T x=y? x=t?
\x¥07?° x$y?’ x#t?
©x>0? x>y ? x>t ? '
x 207 x »vy.? x=2t ?
: The latter keys save calculator arithmetic but two such keys would be
' sufficient. » - g
In a program the way these keys operate is amazingly simple:
(1) If the answer to the question is TRUE, the calculator continues on to
. [ ’ : “ -
the next program step
‘- (2) If the answer to the question is FALSE, the calculator skips the next
program stop. . L s *
“ E:XAMPLE. 1.11-1 In the prog-am dequence .
N 09 x>0°7? , : '
. _ 10 R/S ¢
2 R 11 1 /){- - '
12 R/S ,
/ . . ]

\

-

‘ ’ -
What would happen if,,tlje x-register (the display) after step 8 was (a) 5,

(b) -2, or (c) 0.

v
*

(R




SOLUTION:'

(a) x= 5, x>0 is TRUE so the calculator would stop and

- .
display 5, ’ -

(b) x=-2, x>0 is I-:ALSE so the 'calculat;r would s‘kip to
step 11, caI_Cu'late the ree#psocal, -0.5 and (in step 12)
stop to display that iesuft. .

(c) x=0, x »®0'is FALSE so the calculator would skip to
step 11, try to calculate the reciproca! and fail, haléing -
the calculator to display an error message.

[

. > )
DECISION METHOD II - CONTINUE ON FALSE

(This is a common com;;\iter decision method.)
&
The more sophisticated computer languages usually’have IF ...

»

THEN statements (as well as more complex decision statements.) Here
again the processing is very simple:
(1) . If the answer is TRUE, carry out the instruction follpwing THEN

* {2) + If the answer is FALSE, go on to the next program step.
\, EXAMPLE 1.11-2 "In the p'rbgrarrll sequence ' ’
) "
09 IF x > 0, THEN (GO TO) 12
107 " x = 1/x" _ =
11 PRINT x | -
12 STOP* ’

«

{

‘What wpuld happen if the X-register at steﬁ 8 WY (a) 5, (b) -2, or (™ O.

.
+

%*
In maty computers x = 1/x is machine language for x <"l /x, thatis
replace x by 1/x. This is a different (and algebraically incorrect) use
of the = sign, - ~72 )




SOLUTION:

(a)

1.11 - 4

. ¢
X= 5, the computer would stop.

d go on to step 10, calculate

(b) X = -2, the computer
o : —
1/%=-0.5, print this ¥alie in step 11 and stop at step 12.
(c) X =0, - the calculator would go on to step 10 and at that
point stop to give amerror message.’ <

t ~

Exercise Set 1,11

i
1 - 6 Determine what the caleculator would stop and display in each case

proceeding through these program steps when the value at step 5 is as

given: o6~

x =20 *
07 GTO 10
08 ° x*
’ 09 R/S
10 1/x
11 R/S |
1) x=-2 2)
) &
4) #Fx=_1 . 5)
7-12

value at step 5 is as given:
. 06

| 08
| -~ 09
/’ 10

~ . \

Determine what the ca,lculatl?)r
’1‘ o

07 .

| '

FS
n

5 \ 3y x=2,
100

[
w\buld stop and display when the

=

x 20

GZTO 09 Hint: The results
are not all the

I/x same as exercises

R/S 1- 6.

14

By th{ instruction we mean'here for tl‘ﬁt calculator to jump to the step

num

/;;{ﬁf; -
/

#r given (not to the label given).

73 | - ’



13 . 18

step 5 is

Determine what the ¢

as given:
06
07
08
09
10
11

omputer would print when the value at

IF X 2 0 THEN (GO TO) 10
X = X+1
PRINT X
STOP

PRINT -X
STOP

14) X=5

15) X =2

17)

X =100

18)

X=0

19 - 24

step 5 is as given:

19) X

22) X

[y

06

07
08
09
20)

23)

Determine what the computer would print when the value at

IF X 2 0 THEN (GO TO) 08
X=X+1 )

PRINT -X

STOP

X=5

I

-

X 24)
.

21) X=2
X

~ 0

. * *
25 - 26 The following is a verbal algorithm for a pocket calculator.

-

10

20

30

40

Empty all your pockets »

).

Ae 0
Take a piece of paper and ‘number it A

If you have no empty pockets then (GO TO) 80

50 Place paper numbered -A in an empty pocket'

Py
. ’ he

* i .
This algorithm was submitted by David Lloyd in the September, 1978

issue of a British journal called %athematics Teaching.




1.11 - 6

-

60 A <+ A+
?
70 GO TO 30
= 7
80 Read thia\piece of paper .
o N ' i
. 90 STOP
25) What is. the decision that is made? )
26) What does the algorithm do? 7
~
/
;/
T
N — .
»
. ¢
E 3
L 4
, .‘ <~ i # -
75 .
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1.12.-1

1,12 Your Own Calculating Device

~

[N

For any programming you wish to do' it is extremely important
tl?‘at you know the qx‘xirks and idiosyncrasies of the calc’ula.tor, micro-
processor, or computer you are using. To familiarize yourself with
your particular dev_ice, your best recourse is the operator's manual
or programming guidé for that device. ,Even i} you feel very familiar

<

with the calculating device yo{x are using, you will wish to consult such

A

. LY
a guide in answering some of the following questions.
*

Exercise Set 1.12 . . N

Answer the following ;:;uestions for the specific calgulating 'device
{or devices) you will be using as you study this text. ‘ R
1) Is your device a programmable calculator, a microprocessor" br

a computer terminal? ‘ '
. 2 Does your device calculate in AH or RPN oL a third operating
. )

- -t
order ?

3)  What switch turns your device on and ‘off ?

4) Are programs "lost' when you turn your device off?

5) { .If your answer to exercise 4 was '"yes', how can you retain a pro-

L
gram so that you don't have to work out the details the next time you

need it? \

6) Does your device have printing capability? If so, how do you signal .

it to print?

\ -




&

7)

8)

9)

10)

11)

12¥.

13)

14)

1.12 - 2

How many storaée locations does your device have? How are they
named?

What happens if you have a number (say 5) stored in a register and
then store a new number (say 7) in that same register?

Does your g€vie have register arithmetic or-storage arithmetic?

ou modify what,is in a storage register without re-

[

e, operating on it, and restoring it. If your device

has reg:lst r arithmetic, describg how you would use it to

-

(a) add 3 to R5 -

(b) subtract 2 frem R5

(c) multiply the numbers in R, and R2 and store the product in Rz.

(d) divide the mumber in R4 by the number in R3 and store the guo-
. - 4

» L
tient in both R, and R .
3 4
(e) multiply R by zero. How else could you éécomplish this ?
. ’ - N /
How do you instruct your device to accept a program?

*

How do you change from proéram to calcx_ﬂat%ng mode if it is neces-

sary to do this? -

Does your device have a way of labeling programs so that you can

enter more than one at a time?
' ‘/ P} . . ,
How do you set your device at the beginning of a program/iready to

process that progr&ém? B

How does your device loop? What is its basic instruction to accomplish

) 1
this ?

, 7y '~»



15)

16)

17)

18)

19)

20)

——

Do you loop to a program step or a label?
Which keys on your device do not enter program steps (whén in

programming mwgde)?

How can you review the speps in a program that are keyed into

. you; device? .
Does your device allow replacement of a program step? . If so,
how do you accomplish this? ‘ L
Does your device allow you tc; delete a program step? If so, how
do you accompiish this?

Does your device allow you to inser?a new program step in the

middle of a program? If so, how do you accomplish this?

<

g
S

<y
/

O]




1.13 - 1

1.13 ' Usjing Your Own Calculating Device’
1

. : Lol
s R P

‘The very best way for you to become familiar with your calculator,
microprocessor oncomputer is to use it., The most interesting way to
use your Fquipment is to solve problems. Throughout this chapter we have

presented verbal algoritﬁms and programs that have solved specific prob-

A

lems, like multiplying two complex numbers.

Exercise set 1.13 contains motre problems that you can use to help
L . '
‘you understand the operation of your calculating device. *Each of these

= e

“ roblems can be solved in many ways with sblutions that range from ver
P g y

5 4
“simple to extremely sophisticated. We suggest that you start with a verbal

. aléorithm and a s'imple solution. As your familiarity with you.r equipment

[

increases you can broaden the fodus of your attention beAyond the solution
of the problem to solving the problem in the fewest steps or displaying ad-
ditional information. Make sure that you test each program with several

‘trials whose answers you know (or are willing fo compute by hand.)

Exercise Set 1.13 - .

.
Y 3

1- 4(’Refer back to y.our solutions for exercises (13 - 16) from section 1.9. /

' . Write a program fo find:

L

.

1) The area and perimeter of a rectangle given sides L and w.

2) The area and peri?néter of an equilate- ai triangle given side .

3) The slope of the line between (a; b) and -(c, d). | .

“’, ‘ T~ -

‘ ~79




N

4) The sum of two rational numbers a/b and c/d.

.5-10 These probléms refer to\mathemaf:icalvi_de\as that you have seen,

but have perhaps f9rgot;en. You may 'want to look back at your old notes
(if they still exist) or another m‘ath book.
5) Given the hypotenuse and one acute angle' of a right triangle find
(a) the measure of: the other gcute angle.
(b) the length of <'aach leg. ¢
(c) the perimeter of the triangle,
(d) 'the‘ area of the triangle.
Given the equation of a parabola, f(x)= ax2 +bx +¢c find

(a) the vertex (t'urning point)
s e

(b) the equation ofh‘ the axis of symmetry
(c) the sum-pf the roots
{(d) the product of the roots
For (c) and (d) do not Gompute the roots.
Find the area of a trlangle given two sides and the included angle

Fmd the area of a tnangle given three sides. You might want to
{ N

. use (or find) Hero's formula. .
r—-

<.
Given two points in the plane, determine the et(txation of the line

L

through the tWOCints.

Find all the primes less than 100,

Find the sum of the squares of N consecutive positive integers,
-~

Given any integer less than 100, find ’

(a) its smallest prime factor

(b) all its prime factors
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1.14 Chapter 1 Test - . °* °~ . o .-

.
- R © i

(1 - 4) Give a keystroke sequence.that you could use on your calculator

#

2

to evaluate each of the following aexpres'éions. - ' /

1) 5+6/7 2) (‘3 +.4)(5\Z)(\

s ¥ . - -

3) J6 sin 37° 4y 243

5+7 ° 5

(5 - 6) Evaluate each of the following.

5) 2+4+5:5+7 - 6) 2:5+45%X 7

(7 -9) Determine what the calculator would stop and display in each

~

case proceeding through these program steps when the value at step 5

is as given. . 06 x>0 .

07 - GTO 11 ¢

08 = CHS (gr +/-)

09 X

10 R/S : .

11 E3 -7

" 12 R/S

7 %= -4 _ 8) x= 2 9) x=0

1
s -

(10 - 12) Determine what the computer would print when the value at.

step 5 is as given. aPpo Ifx<0 then(go to) 10

. . 07 x =x 42
- 08 PRINT x

09 * STOP ’ ) ;

- 10 x =X '
11 ° - PRINT x
‘ 12 STOP
"10) =-.6 11) x=0 12y x=3 (\

(13 - 14) Evaluate each of the followiag expres'sion{. Round your answer

to the nearest hundredth.

rd . - 81
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i

Y8.7 + sin 48, 6°

> 1 ‘ _ The area of a triangle- with
(1.5)" - 57 sides a, bandc is given by

Hero's Formula:

Az Vs(s-a)(s-b)(s-c)
where s = 1/2{a+b+c). —
Find the area of a triangle
- whose sides are 6.2, 3.6, and 5.1

13)

i, . : ‘ . t o, w -
(15) The time- needed to comp'le-temone period. of 2 pendulum-is -
given by the formula t =1 \l 4 . where L represents the
9.8 . s

length of the pendulum. Find the value of «l, &c:o'.rrect to the nearest

wndredth, that makes t closest-to 3.7 seconds.

(16) Using the formula F = g— C +32: .

oY -

a) Write a.verbal algorithm to convert a Centigrade temperature

[

to a Fahrenheit temperature.

/

Write a program for your calculating device that uses your a?-
. ) .

e

" gorithm from a).
-~

Set your calculating device to exhibit answers rounded to the

nearest integer. Using your prog‘ram‘from ‘b) find a tempera-

E]

ture where the digits of the Fahrfyeit temperature are reversed
\ n 3.

. ) Ce \
to represent the Centigrade temﬁerature. Example:

,Y'A

? % ‘
v .45°C= 54°F_ or 68°C 2 86° F

(l'f - 18) Choose one of the following two questions. . ;0
One v | . e

- -

) 17) We wish to calcllate the real and imaginary coefficients of the "
\ .

.

reciprocal of a complex number.

Algebraically determine the real and ima‘ginary“doefficients.of

_1'_
a+13i

-
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1 - . » - t ””{- 3 Tt < ‘

) ¢ b) Write a verb;}}lﬁb’fi?:h’rg to calculate the real and imagiharflf

v . B . . , . \ o, - ‘ - B '
T S coefficients of the réctprocal of a complex number.
e ‘ .¢) . Write your algorithﬁx:sfrpm b) as a program for your calculating .
: . ) - . ~ 4 . Q
v < device. o - . - . > ) -
. . 4 : : : : , . L '
e o ‘(c,l - g) Using c), rewrite each of these complex numbers in stand-
E - ” - ' A = . ‘og‘y
| ard form (that is as c + di). ’
. ) e ' g
| 1 | 1 . 1
| ad),o,?. +3i ) TT+i. f) g 8 T 3
E 7 . & g A : 1. ‘ “\
t (18) As already mengioned in qugstion (14) that area-of a triangle with
s sides a, b and ¢ "is given by thle' formmula ‘ .3
| - . - A _ A = \s(s=a)(s-b)(s-c) where s = 1 (a+b+c),
} t ‘ w s . T . 2 .
| L - T « ﬂ = ~
a)’ Write a verbal algorithm 'to’determine the area of a triangle ‘ '
s . S - e ' ‘ . ’
. . ‘ +° - given three sides, using Hero's Formula. S~
' ]

b) Write a program that will find the area of a triangle ysind®your
* * . T ) ) . .

o e
r\ '

I A " Lo :
Lo v o sthm fri a).” .. : '
. _ g opitpm from 2) ‘ 2 ‘ oo
c 7 (¢ - d) “Load your program into your 'calcﬁlating/device and find ’
‘; Y ae N M . i = .
= » the area of each of the fci'owing triangles to the nearest Iinteger.
N K - - , ‘, ‘ \ . * -
I e . 7 . ¥\ a=88, b=712, ¢=108 d) a=2,b=3,c¢c=5
» " . 'S A - . . ] N 4
v N e) 'Explain your answer to d).” ‘e . 4
i ’ N .
L3 - ’
S ’ . - v
1 “ " P
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- “CHAPTER: 2, SEQUENCES, SERIES, AND LIMITS
P ' S ) il
. . . »- N *
" » . “ ’ '\/ * \ ’ N
In this chapter.you will have thelopportunity to use your new-found

programming power t’oge#ier V\Tithiyour more fox:;nal mathematical T~

Bkills to gain ins i%hts into some important new ideas. .

Ever since yoix Hearnea'to count ygh have dealt with the kinds of pat-

«

berns’tha't lead to sgquences.s We ‘will now examine these and more complex

. .

6equences. You will:-find that they lead us to some important applications

c . .

*

L
£} ~/

9
A sequence, S, is a function whose domain is the natural numbers. '

—d L : hd
R

Let us examine what this formal definition means. Weé know what a function
™ . - . .

~ C ‘ . :
is. It is a ''mathematical machine" tﬂat accépts certaift input numberg and
)

. * . .
produces from them output numbers as in the diagram.

Ea T .

4
L ]

. T -

We'also kno‘?whatthe natural (or counting) numbers are. They are the
. el , : ‘ ' S

\

$Shumpbers 1, 2, 3, 4,,@0 on. Our definition of a sequence then js

B » »
v d \
LI P4

. b

)

L4 %

or .other mathematical elements ' v
e— § ' ' - [ \ - P
. SLI > -

\

) ' ~ L} - : . N
- as diverse as compound interest and the length of the path of a'-bouizc'\ng : \‘J

‘ ball. - . _ ‘ \./'
. . ' ) i : v N -
2.1 Sequences ‘ - T - S
:

£ B | K T o MU o ’ )’ ’
L INPUT‘Cb FUNCTION JOUTPUT & I :
= | MACHINE <> : \ - ‘»




\

L]

"a function whose input numbers are restrictedto 1, 2, 3, 4, 5 and
- . * . ’

-~

so on, no negative or fractional or irrational numbers allowed.

EXAMPLE 2.1-1 What is the difference between the

squ&wfunction and the/equence of squares ?
~ .

Solution: The squaring function f(x) = xz or _
A Y
f: x s x2 has as its domain all real numbers

V 4
. Thus a table of values could include the following:.

-

-

13.69

/

\\x

The sequence table would be 11’43 restncted

X

1
2
3
4

e




’

=

£(x) - o
4. ¢ (3,9) . 2.1-3

T e (2;4)

-

RITOR

M

-> X -
v "

In the example our sequence of squares, S, could be listed as the set

of grbder%d‘ pairs: ) . L ’ N

s= {(L D, @2 4, 06 9, @16, ...}

fhe% dots rrieaning "and so on'pfollowing the same'gitte rn. -
Snn:etimes the general term is also named explicitly: ‘
s ={ b @ e 6090 00, ] e

You,will be pleased to know that this compiex notation is usually abbreizi-

ated*by listing only the 'ouimuts' in’ order:

i 2 . B
S - {l! 4! 9! ’ n ’ e } & \
or even : 2
2, * ‘ . '
S = (n ) o - - ! °
. - . , . £y

5 i '
In these notations n is assumegd to yepresent a natural number.
. .

. « )

When we wish to speak of aiparticular term of a2 sequence, again

several not‘a'tions are possible. The third term of the sequence S may
be referred to as ‘ S(3) .

. or S3 .
- - -

The use of pare'hthes‘es instead of brackets here is comrhon sequence
notation.. B ) .
(g

; T . K o - ' )
IS . .,,",Sf) ’ ) ] £

\

¥




¥
L]

' . ) 2.1-"4
. -~ £
i ’
i W (\) . ) _
In the sequence of squares, :83 = §. We could specify this sequence

by designating the P term: -

4

A sequence is called finite if 5t has a finite number of terms: more

simply, it stops. A sequence is called infinite if it is not finite, that is

P
it "goes on forever. "
EXA_M_PLE 2.1-2 For the sequence defined by ‘
. | . Sn = Ven + 1
give the first five ferms.’ BT
. Solution: Substitute 1, 2, 3, 4, and 5 in/the defining _
. '
function to obtain t?
- JT. v V7, 3, V1T

Notice in example 261-2 that while inputs must be natural numbers, out- ¢
& . .
puts are not“so’restricted.

‘

Exercise Set 2.1

[ . . ) B )
1 -9 For each sequence as defined, give the first six terms:

1) Sp=2n-1 . "2) @-w 3)  (i/n)
4 2M : 5) Sp=n 6) (Yn)
. \ v
n . - n 3
7) ‘Sn = (-l) . ) . -8) . (—FT) ‘ 9) Sn = To—il



10 - 18 For each sequence, give the required term:

10)
13)

16)

) 2 T
Snp=2n-1, Sy, ¢ 11) (n“-n), S100 012) (;1-). Sco
2", s(20) - 14) Sp = n°, S(40) 15) (). Sy "
qn -y n_ 3 £\
S, = (-1, S§(100) g (=) Soq 18) Sn= s(40)*

19 - 22 A verbal algorithm for generating successive values of a se-

\ |
quence is:
‘ . .
1. Set n=1, . _ . e
. s
2. Evalulte S, . . ~ - |
.3  Displayn, S - N— S

4. Ixi you have enough values, stop.

5., ne-n+1,

6. Go to step 2. ‘ h ' i J\ :

Program your calculating device for the sequence

19)

2.0)

21)

22)

\
5n'+ 1 ) ‘

S _ ,

n n

-~

’d
N 1

“Run your program to give the first five terms of S,.

Continue to run y;our pro’gr,ag'n until you can predict a' number leOO

I3

) N »
- will be close to. .
N :
5n + 1
Does @ C 5 f‘erl.k? ‘\ . b
» * .
How does your answer in exercise 21 help to justify your answer, «

v

in exercise 207




\

23 - 26 Program your cal¢ulating device to generate successive terms

"of the sequence defined by
' ‘.~ 3

- 23) Give the first six terms.
24) Which term is iargest? Give n and S..

}5) Run your program until you can predict 2 number S1000 will be /

Y.
close' to. v

Ed

26) Use the follawing representation for the first seven terms of this

- . r— ‘
- sequence to explain your answer in exercise 25:
- - - - s —e I -
1-1-1 222 3-3-3 444 5-5°5 6-6°6 777
, { D2 ;2 )22z ' 2222 22 222" 2222 2222222
A _
| o . T
- P - ' «




o 2.2-1

~— ‘ . B

2.2  Arithmetic Sequences T~

In section 2.1 you met a variety of sequences. In order to s’ort

”
LN

these sequences into categories mathematicians assign several names
to types. Some examples are:.

’
Defining.function' First terms

Type -~

S,=7 7, 7,17, 1, £ Constant sequgnc.’e

.
wn
e
]]
o
Y
~
=]
'
-
-
'
\‘:—o
Y
'
Y

Alternating sequences

92}
=}
!

0

o~

= 1,°-2, 4, -8, 16, ... (alternating signs)

9
A more important type of sequence because it has a rumb¥r of in-

Leresting applications is—an arithmetic segquence.

An arithmetic sequence

[

o —

is also known as a linear sequence or an g,g'thmetic progression.

-
\
e
»

An arithmetic sequence is a sequence’ in which the difference

-t

. . *
between successive terms, d, is constant.

Here are several arithmetic sequences:

-

Defining function Firsﬁ terms ‘Common difference

s : = - 5 4‘, 5, . e . 1
_,/ DS Sn n , 1; 2! 3!'
. S, * 10-2n 8, 6, 4,20, -2 . -2
‘. (‘ : ‘. ‘ '
* .(2n - 1) . 1, 3,5, 7, ... "2
N 7
. It iJ not enough for“some differences to be the same; all‘must be alike.
. . . .

Although we have not stated it explicitly in our definition, order

ant. By the difference between'successive terms we meag Sn:l

isimport-
- S,-

LY
3

Q . , ‘ Y » S R

\

T

‘ N

JRE—




2.2 -2

v EXAMPLE 2.2-1 1Is (n3 - 6n° + 12n) an arithmetic sequence?
N ) T .
- Solut_iqn: S1 = 7T o -
- g S. = 8 .
2 - . -
S3 = 9 a
. : v
These three values siggest an arithmetic sequence
with d=1. But =S, = 16
s = 35 ’
5
. _ S = 72 ..
6 *
Clearly the difference is no'longer constant and this
is not an arithmetic sequence.
o ~———-Since we have defined an arithmetic sequence as having a common
' <
' " difference, d, we can represent successive terms as follows:
= + -
S2 S, +d .
‘83 = S, +d = (5 +d')+d=S1 + 2d
-S4:S3+@'=(Sl+2d)+d=sl+3d s ]
. : a , -
In the same way: , L
) S. = S, +4d ‘ " .
5 1 . -
86 = Sy +54 . < . .
A o
In general we can write: ' _ ]
"Sn = S, ¢+ (n-l)dl
. T 2 - [
.. ‘ This formula would be of little importance if we always had the defining

)

function for Sn' We oftén do not have that fur;ction stated. Instead wé m‘

. Qﬁ

'




T 2.2-3

be given the first several.terms as in the following examples: ’
. '

o
4

EXAM“PL_E 2.2-2 Find the zoth term (SZO) for the arith-
Py

- {
metic sequence whg;e first few terms are:
* l Zo l ’ 5! 61 LI
2’ 2 2
M L Solution: We identify S, = X , n=20, and d=1 1 .
» 1,2 .2

Substituting in our formula we have -

520=1 so-11l =1 s ply= 1 + 281 = 29.
2 2 2 2. 2 2
>

———— S——

EXAMPLE 2.2-3  If I purchase a bicycle for a $50 down payment

4 ’

and $10 per’ month for a year, how much will T have paid at the

end ‘of the ye.a.r‘.5 ,
" . . " ,
-~ - Solution: We translate the total paid so far into a sequence
‘ 18t month 60 ) )
2nd month 70 . » SN
o 3rd month- 80 : :
) ’ We have an arithmetic sequence with S, = 60,
vi N " L
d =10, n=12 ) ¢
- ‘ S« S, =60+11110 = 170 o
' .. The total cost of the bike is $170.
(5




4 1-6 Which of the following sequences are arithmetic? For arith-

* Exercise Set 2.2 -

metic sequences find d.

1y . 27,25, 23,21, ... . 2) Sy =n®

3)  (Bn.5) o 4) 4,4, 4, 4,4, ...

A}

1 1 1 1 " s AT
5) 1, T FTrogr o 6) 1.6, 0.7, -0.2, -1.1, ...

-

7 - 10 Give the first five terms:’

7)) s, =3, d=4 8) 5 =5 d=-1

H

! 6, d =2 Be-careful!
AY .

I
|
11 - 14 Use the formula S, = Sl + (n-1)d - to find the indicated term .

99 S =p-2q,d=q 1 Sy
v

for each arithmetic sequence:

g 8

11) 1,3,5 ...; 8 ] 12) 10, AL L Sy

13) 1, 2, 3, ‘4, R §20 : a 14) 50, 52.50, 55,‘..‘\.;; 59 -

15) In'terms of-d the difference between S, and 59 is 3d.- Why?
F'y z ) AN :

16 - 17 Express in terms of d the difference between

’
€

e

}6) : S1 and JS5 ~OY M) Sy4 and 550
18) The arithmetic mean bgtween two numbers is the term that wonld. [ ’\
. céme between the two numbers if they were in arithmetic progression.'

Thus finding the arithmetic mean betmeen 12 and 37 means letting

8 = 12, S, =37 and finding S,. Use what you found in exercises
15 - 17 to find d and then S,. -

93 -




“-19) ™ Find the arithmetic mean between 10 and 25,

2.2-5

20) " Find the arithmetic mean between a and b.

21) Use your answer in 20 to justify the use of the synonym avex.'age

\ .
for the arithmetic mean, %
22 - 23 To insert ,n terms between two~given terms of an arithmetic

sequenc'e is often (misleadingly) called finding n arithmetic means be-
tween the two numbers. Generalize your method in exe rcise 18 to fir}d,i

the following:

L4

22) Th;'ee arithmetic sequence terms between. 5 and 13.
23) Five arithmetic means between 37 and 19.

»

24) Joewaves $2000 for college spending money. He plans to spend

$50 per week of this. Use the arithmetic sequence formula to

determine how much he has left after 26 weeks. (Be careful. Note
at S =1950!

th 1 9 )

25) Find a formula‘ fPr the amount Joe has left after +w weeks (in exer-

.

cise 24).

~ ]
/7

26) In an arithmetic sequence Sy = 40 and S,, ="12; find S...

10 17
Hint: first find d.

PR, N -

¢ ~

27 - 30 An ari@‘metic sequence is also called a linear sequence because
its)defining function is linear; that is, of the form .
.mx + b,

’ 4




- Thus the defisiing function a linear or

takes the foﬁn ]
' {(mn +b) or Sp=mn+b
A i

Find S asa function of m and b.

»

Find d = 5, - s'l as a function of m and b.
Use what you found in exercises 27 and 28 to determine the deq

fining function for the sequence: 5, 7, 9, 11, ..

Find the defining function for the sequence

S

1
4




. ' . 7
2.3 Geometric Sequences . . - ¢

Geodmetric sequences are also called geometric progressions or
- ; : - . & )

\

exponential sequences.

-

)

g - 13 . ¢ 3 :
. - | A geometric s‘equence is a sequence in which there

~ . - . ) -~ 3 *
. is a constant ratio, r ¥'0, between successive terms.

»

. x N\
Here are some geometric sequences: ,

4

Defining funcxon. First terms Common ratio

s =21 1, 2, 4, 8, 16, ... .2

(0.5™) -

0.5, 0.25, 0.125, 0.0625, ... 0.5 .
N 59-1).' N y '

/ 1 1 1525125 5
100 |’ i 10020 " 44" 4 4 ' 77
(3) 3,3,3,3,3,3, ... SRS )

SSTS U0 T TR T S |

Notice that the 13st (constaht) sequence also has a corrvmon difference,

-

d = 0, soitis both a geornetric and an arithmetic seﬁ%enée. .
) . - <. .
From the defining relationship for a geometric sequence

N
Y -

-

S/V

e . . - ’ .o, .
n +°1 ="r .. ] . \/ -
-~ S . - M - \
n -

we may obtain . '
Sn+1 = T 5,

; . - . . ' ’ ”
£ : 4 |
- . * - * 7 ‘ . \
* . p ' \ y T by B -
As in the case of the ‘arithmetic seque
thus r = (Snfl) /SY} -

nce, order is important here;

..

-

. .. b 4

N 4
B L




, = ‘ S ) Co, : 2.3.2
. . .
‘..‘ i Applying this to the first few terms, we have .
‘ S, =18, : :
“ ' 2 \,‘ 1 ¢ s L . .
S3 =,§‘:Sz = r('rSl) =r S*1 . "
N bt - :‘, - 2 ' .3
84‘- tS3 - r(r Sl) = r.Sl . F » .
. . a .
) Similarly: !
- 4 P »
3
¥ S o SS 3 l\
e .
" This pattern teads td-the -general formula for Sp: A -
l .\\ “ ¢ ’ N
P _ .n-=1 . 1
s\n =T Sl v - - !
- '

3 -

‘EXA.‘MPLE 2.3-1 - "Find the ninth term of the sequence whose

first terms are 3, 12, 48, 192, ... .

..‘ . v - . .
Solution:  We identify. S; =3, r = 1?2- =4, andn = 7,
i 7-1 o J
S;=4 - 3=4°3-12 288

a4

To calculate products like these, a calculator is very useful. In the next

Lo -. -~
" example it’is even more important. s N
r : . ,
'EXAMPLE 2.3-2°, Ina geofnetric sequegce 83 =4.056 and
 §,=11.5843416, find S, and Sg. . S
Solution: S3.= rZSI so (1) z'ZS1 = 4.056 y , ~
te N . 6 6 :
S7=1_' S1 so (2) r Sl‘= 11, 5843416
P T Dividing (2) by (1) we have: 4 7
. o 4 R
¢ " r* - 2.8561 and r=\JZ.8%61
o And by calculator‘(using the yx key or | v i) -
. ' ) .
. e T . . r = 1.3 y , /
- ‘ ‘ .97




. 2.3 .3
~ )
'f‘ . .
- To find Sl' “s'ub‘stitute this value of r into (1): ]
¢ ' ' . .
2 . ‘ -
(1.3) Sl = 4. 056
~ . d Sl = 2.4 ¥ |
. 4 S . .
To find SS: S5 = {1.3) - 2.4 = 6.85464 : 4

. . -
- ° '

Exercise Set 2.3

4

[ 4

Ve . . .
1 -6 Identify which of the'. following aye geometric sequences. For , )
B _J rd
. those t}fa(E are geometric,, find r. . - . ’ ]
" ) - l l' \
1y 1,5, 25, 125, ... 2) 8,2, -, =, ... ¥
. - 2 8 A
3) 2,6, 18, 72,0, 4) 144, 120, 100, 83% '
5) 0, 0,00, ... 6) 1, -3, 9, .27, 81, ...

!

.7 -10 Give the first five terms of each geometric sequence

7) Sl=3, r=2 ’ . 8) S;=1, r= 0.6

_9) Sl ) 2 . 10) 53 =a, r=b
. \

!
11 - 14 Find the required term of each geometric sequence:

n
L
wn
L]
n
og

12 2.4, 1.92,...:5.
) 3, 2.4, 1.92 S6

13) S =72, S, =8; Sg 14) s, ='18,')§7=9l.125; s2

e 11) 1024, 512; 256, ...’;S12

1 3

15 - 18 The geometric mean between two numbers is the number that

“ would fall between them in a geometric sequence. Thus to find the geo-

. . , P
metric'fne\an between 2 and 32, let Sl =2 and S3 = 32, and find SZ'

Use this procedure to find the geometric mean between each of the .

i

@uowing: o
i < ' /




Find the -mean proportional between a and b That is, solve

the proportion

= &
. b

for g.

-

What do your results in exercises 19 and 20 tell you about the
. ) . k‘ .
mean proportional and the geometric mean? ~

!
e

Inserting more than one geometric mean between two numbers- i8

c” . . ¢

" like the proc-ess for arithmetic méans. To insert threé means be-
. s

tween 7 anchw?, for example, set Sl =1, SS‘= 67, and find Sz.

S3, and S4.
Insert three geometric mtans between 7 and 567.

Insert two geometric means between 567 and 168.

-

o

A golfball dropped on a cement floor bounces 80% as high. I the

Bball is dropped from a height of 2 meters, give the he{'ghts to which

it boundes for the first 5 bounces. Is this a geometric sequence ?

If so what is r? -~

V.

s A 'nest" of squares may be constructed

by joining midpoints of sides. Show that

tgxe areas of the squares form a geome'tric

2

sequence; that is, that S l:\r Spn- (Find

.

r.) If the area S, is 96, find S,,'. ; .

99 ' /
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2.4 Finite Series ) ) .
‘ - B -~

y

We found in sections' 2.1 to 2.3 how to calculate specific terms

of many sequences. We now turn our attention to finding the sum of ..

’-

the terms of sequences.

Clearly there is a direct way of doing this. ‘

4

EXAMPLE 2.4-1" F.ind the sum of the first seven terms-of the
.aritl ‘ etic sgquence (2 + 3n)
Solutién: Generate the first seven terms: 5, 8 11, 14, 17,
" éo,zé..Addihenxtoget 98. -

'/ ‘ . .
EXAMPLE 2.4-2 Find the sum of the first tight terms of the

-~

P . geometric sequence 3, 6, 12, ...

\ ‘ sent the sum of ‘i:ermg;.;?to S,

-
L]

,Solutio‘n: r = 2, so'the eight terms are: 3, 6, ‘12, 24, 48, 96,

‘192, 384. Add to.get T765.
- Vo EA ¢ .

We now introduce the symbol §/n (using the regular dollar sign) to repre- .

s .

' NS Co.
Thus: ' . , s . X
: = 5y, - ‘ '

$1 =
\ $2 = 5 +s2
3 ‘ . ‘
= ‘. .
-$3 s1 +SZ+S3
$4 = -sl+sz+s3+s4‘ . } 2
and in general , ’ ) )
= 'S, +S, +S, #... + .
4
~ OUO~ ~

. \ “ ”
We have used the notation dn or S(n) for the 'nth term of a.sequence.
” ’ "




Applying this ‘notation to the examp‘les,\‘ in example 2. 4-1 we found

< * _
‘$7 = 98 and in example 2. 4# we found $8 = 765 ,
It is important to recognize that $,, $'2/,;$3. @$4, .. itself forms
‘ ~7 ! . 5 b »

) - .
a sequence. This sequence of sums is called a series.

Whene\}er we are given the defini'r;g function for a sequence (the
N
formula for Sn)' we can use a simple algor m to calculate $b This
, A . \ N, WA
- verbal algorithm is a minor modlflcatlon of the program of section 2.1

(see exercise 2.1 --7.) used to caldulate uquepce terms. We wﬂl dls-

play both S, ahd §$,.

4

TO CALCULATE Sp, and $‘n, forn=1, 2, 3,

s
3

Set n «1, $.=0 .
Salculate Sp : . AN
Display n, Sp y .

$ «—~ $+8Sp . .
Display $ ' \
I n is large enough, stop

nen+1 ) ’ . /\'

Go to step 2. .
'} 1
1 * ) ‘ \

- ’ i
This verbal algorithm has several problems associated with it.” First, it .

0O 2O W P WIN

does not work for sequences for which the g‘enéral term is not available.
I 4

You will be asked to modify the program to take care of this for arithmaétic

and geometric sequences. Another problern is that the process is ineffi-

cient. For cxa\..p‘e, if we want to calculate $100, we must firet calcu-
. . / *
. [~

late $1 to $99. Q

In the case of many series, particviarly the arithmetic and geometric

4

series, we can calculate $n directly. We now turn to the development of

101,



-/ .

- “those formulas. In éach case we start from the basic r'elationship
4

—={1) $,} = S!4+ s, +\s—3 te. 4S8 ,*S -.fsn
» }

and émploy a trick. -

foe Arithmetic Series )
v .. « 7
« We re‘z:a.l'l the role of d: Sn+l = Sn +d for all n in an arithmetic
. . ‘ . . . [ »
sequé€nce. Fhus we may substitpte in (1) to obtain:
<. X
(2) $, =5, + (S, +4d) +(S;+2d)+... +(Sp-2d) + (Sp -d)}+ Sn
. ) - B

Y : ‘
Now we use the fricks. We rewrite the right member of (2) from right
to left - . N ' ’ N
b N -~ ) . : ()
Y (3) 8 =Sn+ (Snad) +4Sn - 2d) + T, +(s\; 2d) + (S + )+ s,

“and then add (2) and (3)

bo4) 28, =(S) +S ) + (5, +5) 4 (S +Sp)+... + (S) +S8n) + (S, +Sp) -

+(8) +Sp)

. 4

'On the ri'ght side of (4) we have' n pairs (Dé you see why?) so:

" (8)~28n = nis) + E)

‘ ‘,and'f

.

(6) |$n = 3 (S} +Sn).

4

Y

. - - v H
. 5 . Now we have, in equation (6), a formula for the sum of a sequence, $,

given the first and last ferms, ) S1 and S;; and the numbex{of terms, n.

\ .

.. .. f
If we don't know S.ﬁ' we ca:??alculaj:e it by the formula of section 2.2,

(7)’ Sp = Sj¢+ (n-1)d;|

3




or we can substitute this for Sn in (6) to give:

. y n ’ - 1
< (8) | $n = =([25, + (n-1)d " e * ‘
, n = 5 (25 + (n-1)a] I “Yi
Y N 0 = T -
S ' ‘ 4
A EXAMPLE 2.4-3 Find the sum of-the first 20 terms ofs s ~

the gequence beginning: _5,' 8, 11, <=

Sc;lution: Sl =S5, d=3, n=20. Substituting in formula {8}:

. Y *. 70 .
;o Sy =RTo[20 5 +(20-1)3] =670
. » . Q
v \ ) : L ’
EXAMPLE 2.\4-4 Find the sum of the first 100 natural numbers.

-

Solution:  §, =1, S =100, n=100, d=1. Using formula (6):
160 .. .
$100 = (1 +100) 25050 . /

4

The Geometr‘ﬁc Series

s

) . * - - e .
: Tur,nir;g now to the geomet~ic sequence we recall the role of r:
J - . ~ , )
Sn+1 =r 8§, for all n, We bubstitute this in (1) to obtain:
] ’ Sy ’
Y ' (9)" $_= S; +rS +r2‘s' $.0 4135 4l T
[N - PpnT. 0L T IO ) . 1 . 1 .
e . a’ : .
Now the trick. Multiply (9) by r: ,
L4 A , * —‘2 _ -
(100 r$ =rs, +rzsl+r3.s1 + ...‘-_i—rn S| +r‘“-’sl +r“sx
’ v, N
Subtract (10) from (9): ’
' r
¢t~ n : . )
. Sy s ars =57
. L
Factor the left member of (l1): N .
12 $ l-r)=5, - 'S, ' o
(1z) $ (1-r) =8, - - 103 S .
~r ! ’ . ) ~
N , . }5 * . ® .-




\

" This leads fo

4

4

(13) .

S+

S, - 15,

l.-r

L

(14),

-

$

n

_ S -r

l'-r

: ’ +
This formula corresponds to the second arithmetic sequence formula, -

*(8). We can rewrite ' (13) as

(15 =

h ]

, and substitute Sn forr

sl - r(r?l-lsl)'

:
1 -«

n-1

¢ .

)

(16) | $p =

Sl'- rSn

) 1‘__\1':14

2

P

-/

[

. S1 to give a formula corresponding to (7):

v

%

3

EXAMPLE 2.4 -5 Find the sum of the first 10 ter% the geo-

F ‘metric sequence whose defifling function is (3 - 2™).

Solution: The first senveral teTms are 6, 12, 24, .

r=2 and n=10.

5

601 - 219

Substituting in (14 ):

.
. -

(-1023)

$10° 1
‘

B

-2

6 -
Al

AN

= ‘6138.

-

We summarize here the formulas we have'developed: ‘
L]

GEOMETRIC SEQUENCES

n-1
Sl + (n-l}dl . S (

ARITHMETIC %EQUENCES

Sp =

~

$, =3 (S, +Sp)

-




’, . ‘ ’ . - . ’ 2. 4 -' 6
. Arithmetic Sequences {cont. ) Geometric 'Sequen_g:es {cont. ) _4
€ . . | ) ' = , N . .
‘. © 8§, - ™S
_n I | 1 .
$, = 3 [zsl + (n-1)d] B $p = ——

) v i-r . .

. . S_l(l'r‘n)(
. ’ h. N '$n=‘ - . .

-, ( l-r : .
- 7

. Exercise Set 2.4 . -

‘For many exercises a calculator will be helpful.

BER. B

1) F\ind the sum of the first 50 natural x;umbers.

- . 3
2) -Find the sum of the first 20 powers of 2: thatis, Zl, 22,, 2, ..., 220.

-

' v .
3 - 10 Identify each sequence as arithmetic, geometric, -or other. Find

the required $:n. o . \ ' . .
' 3) qp 3, 5, 71'--;$‘20 - 4) lr 31 51 71---;$n‘
5y 8,4, 2.1, ...:8, 6) Sp = 1000(0.5)"; $s
s . i . . 2’\ i
7)) (5-3n).$, . 8) (81(3)7 )%y S
b 9)  (x% -x +3); $g 16) 800, 750, 700, \..: $5, -,

. L 4
-, ! * ,'/’ . / ‘

11 In a famous problem- you are asked which you would prefer to re-
. ‘ . ‘ - -
ceive: a single payfent of a million dollaf_s or 2 30 day month in

: ¢ Which you are paid 1¢ the first day., 2¢ the second, 4¢ the third, -
. i ‘ s ’

. and so on, doubling the amount you are paia on each succeeding

-

. : .
day. Deétermine the better offer by careful calculation. . v

. 0
12) Progrm and solve exercise 3 by following the verbal algorithm

; °
- /\ of this section. o .

» ] 105 o,

-




+

<«

13) Modi}',y the verbal algorithm to calculate Sn and ‘$n forn=-1,23,..,

- . M
y

when you 'don't know the defining function, but only know that it is

.

an arithmetic sequence with known Sl' and d.

F ol

. v
!

14) Make a similar modification for a geometric sequence with known

. .
“

Sl and r, ‘ Y. . '
< .

15)  Another way to derive the forrula for $, is factor

v
.

$. = S. +rS +r25“+...+rn-15 tS(l+r'.+rz+...
n 1 1 1 -1 1

3 ' ‘o ( '. ) _.n
and substitute for 1 + r+ " + ... + " l/it‘s equivalent ! ] — .
o -r

.
~

. _ .0 ' ) CL . ,
Show that l—r = 1l+r+ r2 +... n-1 by either multiplication

l+r
: M.
s '
or division. .
P - : . .

16) What happans to formulas (13) and (16) when you have the constant

\ -7 ' .
sequence - 5, 5, 5, 5, .. ? Give a formula for $, for a gconstant

-
. a

‘series in terms, of Sl and n. _
e

17) (Check your second answer to ex®rcise 16 by using the arithmetic
¢ . -

&
sum formula,

’




\ . .
N .

et

_those of tii section, infinite series and limits. In this section we-will,

. ]
introduce these important ideas only partially and informally, the details

-
[ -t

Ve

and more formal asf)ec t7eft until.you meet these topics again in your
study of the calculus. N , o

Without knowing it, you dealt with both topice as early as grade six
. ' r - .

—~f
when you tried to represent 1/3 as a decimal and found'» .
, . ) 1

4

(1) = = .333533333333;_333333333..

always Wlth that same tantalizing and elusive 1/3 remammg after each

& e

LY

step of the division. We may rewrite the expression of the righf member

.
-

of (1) as: ’ ‘

1 - 34.03+ .003+.0003 +.00003 .+ ...
3 -
Notice thaf this right member is an infinite

(2)

1}
eometric series, infinite

meaning that it continues forever or does not stop. The defining function
“ v

for the gequence ?f terms to be ad}ed is:
v . ‘3 >

R oron AP .

)
You mafy check this by representing Sl' ~S-2 and S3. In this sequencde
3 - 1 ’
1
.of section 2.4 to get: :
— - ‘
* .

We have been uging the three dots, formally called’an elli ipsis, to'mean’
"and gh on following the same pattern. ' This is standa? mathematlcal

practice. i 1 U 7

'S, = Tgv»-and r = 75 . We may substitute this in one -‘of the sum formulas



If we evalhate this exp_rgssion!for values of g ‘we get (as we should

-
.

expect): e

~

»,

1 2
31 10
/

1

LI O

10)
1

v ~

99

1. _
1 3) = 3 100
>

999 ._ 333 :
= = .33
fooo ~ 1000 333,

—

Y

-

' These sums check directly with what we would get in equatic.m (2). - Since-

. . ‘ N ] . .
we know by how the series was generated that this valpe gets closer and
: . ,

closer to 1/3 we may write formally

1
lim $n = T
n-so -3

. We can read this "The limit of the series sum as h approaches infini ‘
. i . : ]

is one third.," In our informal um{erstanding it is reasonable for us to think
. = ' ] A

of limit as meaning something we get "'closer and closer to." (There are

many problems with this definifion, some of which will be'addressed in
Y . .

‘ »
the exercises’.) no

e v

, e

' 2

Nowtwe consider the series formula itself as n —» oo

s L4
S -

_ S (1. ™

n

. 1'—1‘/
‘ -

1

. -
-

The sense bf’thi_s is ''n becomes very la.‘rge. "

A 0108‘,




A ., - . . ° -
L] - - ’
[ 4 “ r ‘
) 4 - .
N b .
N 9 2.5-3
- . . ]
. , ¢ . 3
. ‘\ . 4 n g . »
i . ] - . 7 . s - -
’ . o \ . n- - .
focusing -our attentionon r . We claxg: that _ . | .o
7 ' A 'J ) . ' L
: . ) . 2 5 - ’ " : R o . rd
: = .31, 1 -l rcl, Jim r).=
SR . . <L AN e

.t -, ‘ . < '\' ’ ) -
ot / We will not prove this theorem, &'will instead try to justify it by medns
PR £ . . . -
LN I ° :

2o . of.'exagrip'les.' ¥ r=20.1, .it is to believe that r" gets closer and

-

-
N

_closerto 0./

. ' : R e . A :
s . - LA »0. 01 o . ) \9
5 . - . . ®
r- = 0.00001 ' -
’ . . - ¢ . .
. 10 ", : 3 .
. . r = 0.70000000001

. ‘ ® oo : : )

[N

But what abowg¢ r = 0.9°? Doe; (0. 9)n also approach zero™ Ni:t so quickly

~

-

perhaps, but it does:

s .
. ’
a0 ’ r? = 0.8l &
) . . ’ N ) . 5 _ ' ~
’ ' } r- = 0.59049 .
' )~ - - values
) o r& = 03486784401 . rounded to
' o ‘ 50 k 3 L . sten .
. e7Y = 0.0051537752 decimal
‘ s * ' digitg >
: ¢ N
, : r100- 0.°00002656 14 :
r2%% = 0.0000000007 >
You should check these values by calculation. ) ¢ -
- ‘ ) . . ~"
\, f -1¢r«gl1, \{Je have said that r" appro\ches' zero for large n.
P ‘ » - P

' -
' This has a profound effect on the formula for §;, under the same conditions

. .

n
) Sq (1 - 1™ §1-0 s

‘,,-.‘ ’ $n l1-r 1 - r ‘l-r .,

L

J

N L
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I

. . N .
»

.
' ‘
- .
.
.

\N e

“

-

¢

. g . .
4 . 2.5-4
* - - ol T
" N T ’ *
i /
We can write formally
. . - @
s . 8 .
2.5.2 ¥ -1<r<1, lims§ ?—‘ for the ge%r’::tric series $n

4

n—)co l -
M O 4

P . ' . -

* ) . 0 1
To apply this important theorem we rotice that any geometric series

that does not stop is an infinite series. We must only assure ourselves
. ’ * N ‘

that -1« r <1, We will abbreviate_r’}irg $1',i by $§_, or simply $.

EXAMPLE 2.5-1  Express asg/a ral'ionalv,n'umber'th;e decimal °

of 4 L g »

. 0.636363. ..

’

14 ‘ f
N . . \
Solution: We may rewrite .636363... as

.63 +.0063 + .000063 + ...

-

and identify S'1 =763 and r =.0l. Since the ’
series is infinite and -l< r <1, we may use
the formula of theorem 2.5.2 to obtain (I
N ) $ ’= & = _6_2 = l ' *
0 o0 1-.01 99 11 TN
. - " ’
/ EXAMPLE 2.5.2 Find the sum of the terms of the sequence
- (2 . z
. 3n - i R )
Solution: . We examine the first terms of this sequence
- 20 20 20 20 K
| 3' 9 27’ 8L’ .
\ v . . '
) to identify S, = 20 and r.= l D
‘ 1 3 3
. N A&
f 20
3 20
[ = —_— = lO I
’ 1.2 2,
3 .




\

!
v
|
l
5

§ 2.5-8

- - v ‘.

-~
In the exercises we will also examine limits of non-geometric’
. o T L

. . <
series.

- L

.
Sequences can have limits too as example 2.5-3 wiil show:

\
3 AN

~

EXAMPLE 2. 5»3./7 Find the limit of the sequence

n+6é .
Sh = 3 _.2n 2% N> oo 4 I

-

b

. Solution: Here we examine some terms

¢ ' .
\ Sy=1 s, = -8 S,= -3 . .S, = -2

We seem to be going nowhere fast, but try larger values

+ ~  gapt - _ -
100= -+ 538" 'S 450=--50%" S} 440 000

>

S,n= -.94

. 10 S

This suggests at least that S.e> - .5 as alimit. g

_diviging numgrator and denominator by n to obtain

’ ' 142 -r

___'n ) .
,3__.2 . /

.

n #
Now as n grows larger i and %J‘ will éet smaller and
n ¢

'the value of
n+b 1+
3.2n 2 22

\. . ) -ﬂ_
h ]

as we found.

¢ ‘ . \
~ Other sequences will be examined in less detail in the exercises.

*

To tonfirm this thm"mg we change the form of rgtzn—) by

‘A

= - 5000

. -
. - . * - -
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3

/

W IR .
(9 £ > . 8 "
’ . ~2.5- 6 .
. - S ) . -7 Cf
“‘ Exercise Set 2.5 . ' _ : . C o~
N Iu“br\each value of ,r", find by caleulation rs, krlo, vand rlOO
. .
correet to six decix;ia.l digits:
) ren 99 (find xplooo‘aISO). 2 re-.99 -
3 rel1 . . &) r=-Lo)
5) f =k . - ’6)‘r=-1
7 On the basis ;f ybu.‘r results in exercises 3 - 6, ’do you be‘];ieve that
- the rgst;iction (if,th;.oren{ 2.5.1 to lr'l <1 is~neces’sary'.:
8) Is theor"emj_. 5. i tr\{e for r = 0‘? Why? \) o
9) Give an egf*{mple of a ségu.ence with S, # 0 and r = 0. Does
the formd;auof theorem 2 52 work here? .
10)~4 Give an‘é.igument tl"xa:t a.'n arithmetic sequence with d # 0 does not

in

12)

13)

»
4

. - - ’ ' /
}}ave a lxgnt" K

Even d ='“'0‘ does not assure a limit to an arithmetic series .. Give

E]

one arithmetic series with\ch/= 0 that does not have a limit and one
‘. L ‘ . v

that doas. ™

Program . . 5 '"3 -
1Y Y S - 3n” - 10n +n
: - 2
n Tn + 4n3

- n

] .

By evaluating S'n. for increasingly large n, determine a candidate

for lim 3n2 . lOn3 +n " /z‘\ T, .
31—)65 7n + 4n° - n° :
,,/ {2_ - oo . [ .
. oo «
J’}xatify your candidate in exercise 12 by dividing numerator and
Y 3 . I T /
dehominator of S; by =n". .

: 112 :

t




,

14) Program

' | ’ 205 l ‘ '
. - n'- - - *

. ~~
. . (a) Evaluate Sp forn=1, 2, 5 10, 15, 19, 20,

s/

N
R N ——

. ‘ To what limit does S; appear to be gofhg? <\ .

(b) Now evaluate~Sp for n = 100, 1,000, 1,000, 000.

L .y

To what limit does Sp approach?
- rd

15)  Justify your amswer to 14(b). Hiat: Use the method of Example 2.5-3.

-

16) A ping pong ball is shot upward from a toy cardhon to a height of

» . 2

5 meters. It then falls back to the table on which the cannon stands

» ' .
and rebounds to a height of 4 meters. On the \ o o,
/ . next bounce it rises to 3.2 meters. If ) AN -
s a . N , "\‘
this sequence of bounces continues in ,' , 4

)‘ N ’ -
the same pattern, how for does the

ball travél‘ before it comes to rest?

[
-
e -
-
™ -
Y
- -
-
- ez g
-,
™ -
-~
-
»
.
’
.
,‘--"'
. .
B W= =

Hint: Don™t forget the dijtance up and down!

17) Starting with a square with side 8 cm., : - ' l
“ ’ form a second square by joining the - ) <\
(
\
- midpoints of two sides as shown. Cen- l

tinue this process. Find the surr: of

the perimeters of all squaregs con-

. sidered separately. .
oo sl
[ q A\
7
' 113
: 4

N

.
o
;( A.‘




-

~ 2

For the nested équares of exercise 17, find othe.sufn of the areas

of .all the squares conside red-separately.

’

From a squaré one fourth is removed, then

one fourth of one of the remaining three

fourths, and soon. If ﬂl{s procedure

is continued, to what area does the re-

maininf,ﬁece approach?

.
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2.6 Recul‘sion _ > : ) ‘

»

v .

In this section and those following yon will meet a number of ex-

4 v : .
.. -7 tensions of the basic ideas -presente(in'{his chapter. In them when you are

—— *

confronted with 2 new sequence or series, you will find it to your benefit

. oy
to carry out the following checklist of steps. (Others may occur to you
\ -

=

as well') . . .

~

1. A, I t‘he sequénce (or in the case of series the sequence of

" sums) is/g/iven by idenfﬂying Sp write the first few terms:/

RS
Sl, SZ' 53, S4 OR N

B. If the sequence is given as a sequence ‘of, terms, try to
identify the defining function for Sp-

2. Check to see if your sequence is arithmetic or geometric by

‘ 3
looking for a common difference (arithmetic) or. common ratio
v

. + -
’ (‘eqmetrid. If it is one of these, be prepared to apply appro-

~ . priate formulas

. ' ' 4
3. If \(our, sequence is ?leithar arithmeti¢ or geometric, examine
.. * ‘-
. how_you can get'from one :tep to the next. This is often useful
® . '

in examining the properties of a seﬂ'uence and eapeﬁ%auy ip pro-
: 4 .

gramming it '
4 . "’ L3 = x

! . 4

Let us examine step 3 further by means of an example. ;
. - N . 1

* EXAMPLE 2.6 -1 Find $_ for .ne sequence (7).

) /> ‘. - . . n - n'/

v . Partil Solution: In case yo:) have not met the notation n!, be-

/

. ,
- ' *
.
B 2 -
. )
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.
fore, we note its two equivalent mathema- ‘
. tical definitions
L ] ' -
i [ 4
e - DEFI =n! =1 23" n, 0 =1

DEFIOI O0!'=1, n'=n{n-1)!

1}

[

1

Thatthese two definitions are eciuivalzt may be seen by

cl:tecking the regults forn=1, 2, 3, ...

n, )
. n DEF T DEF I ,
- < ) ’ . 1
1\ A 1 110 =1-1= 1
2 1-2=2 2 11=2"1= 2 .
. 3 C1-2-3=6 3.21=32=6
o~ 4 1-2-3-4=24 4 IN=4-6=24
‘NO\T—we return to our example. L We seek: . -
» ‘ i
$n = % + ’2_1' +(% + ‘—l +... + — T(step'l of4our‘check1ist)
» o .
(‘ This series is neither arithmetic nor gepmefric (c;hecklist step 2)

"We can get an idea of the sum by programming and using the program
<2 - :

to calculate $n for incre,asing’ n. A verbal algorithm to_do-this is:
) - . .
1.-Set nel, $¢0 I | »
2. Se1/n! . )
3. $e—% + S ' y .
4. Display n, $
.5
6
7

%

If $ isnolonger changing, stop; otherwise
. no-'THn;I ) .

v 1. Goto step 2.
\ Uy .

*

A ) M .
Here as elsewhere in this chapter we consider n a natural number.
’ L]

’ » A A Y
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‘ . . ‘g‘ - ¢ 2.6-‘3‘

’
-

19 ) \ ~ ~" . ., -
. ¢ ' -
- There is-one difficulty with this algorithm. In step i
¢ : ]
2 we are using definitidn I to caleulate Sn. For given
) ' / ' ¢
n this involves n-I multiplications (even if ‘n! is avail- .
» ] ., . .: Q
able as a program step.) BQi compare Sn with S, .y
s = &
. n n!
L1
: . Sa+i-® @
/ ) —
- . A little thought should*suggest ﬂ:a‘t -
' ; '
L . 1 _l_" (Refer to Definition I
! (n+1)' = n' °  n+l . . }
3 ‘ )
and ' >
. S '
S 1 = n —
n + n+l1l [
~
In other words we can go from Sn to -Sn+l bi dividing by n + 1.
‘ This leads to a modifkd algorithm: ' ' -
., i. Set ne0, $+—0, Se—1 =
| 2. . S-—m
) i s
: /’ 4. Display n+1, $ ‘
: 5. If $§ is no longer changing, stop; otherwise
6. ne—ntl* ‘
7. Go to step 2. / . -
y . . ,
)
* . You will be asked in the exercises to program and caltulate
v ' ——

this. function.

' /

Ve 7
i Wha?we did in Example Z‘é- 1" was to use a recursjon formula

.

Sn+1 = Sn/(n + 1) .in place of the more complex defining formula Sn'= 1/n!
. &

A recursion formula is a formula whigh defines a term of a sequence by

the immediately preceding term or.té rms.
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b o - .
This is possible for arithmetic and geometric sequences as well
N . R
as many more complex sequences:
. . A
' Ar‘tthmeti:: Sequ.ence:- Sp41 = St @
Geometric Sequens snll = r Sn . . ) ,
- 3 4

The technique may be s~ directly for arithmetic and geometric series
. ‘ ‘ Y

as well. - : ‘ . ( '

EXAMPLE 2. 6-2 ' Express $n+l. for an arithmeﬁC\equence in )
¢‘ \ . b v
terms of $ . ' : . 6, |

s.n . ,
\ hY . oL . |
Solution: $n = S1 +~Szl+ S3 + ... 4 Sn*‘ N
$h41 = 5 +s2 +Sy, 4. +S +S = $m+sx;fH

FI

, {
y and since Sn+l = Sn rd.

i £

$n+1= $n+sn+d =$n+Sn+!

Note that in programming this :;vould be accomplished by ) ‘

‘ , Se=S+d ' -

-

$e$+5S

since Sn+1 has already been calculated in the first of thé\two steps.

You must be very careful of such cvalg:ulations.

-

A famous recursion defined sequence was first examined by Fibonacci

4

of Pisa and since by many mathematicians. It is the sequence

o 4 *
?1=1, S,= 1°

S

i . g v
. n+2 )

=S +5 .

§

-

. Yop-will have a chance to examine‘thie‘sequence}in the exarcises.
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Exercise Set 2.6 .o

L 3

L]

—

14

'
'y &

for a geometr!c series.

»

2) Translate your ax‘rer in Exercise 1 into a twqQ step calculation’ -

.
/’

algorithm.
~.<

.
»

1) Usge the method of Exa,mpie 2.6-2 to develop a recursion fo.i-m,ula. )

a4

3-8 To translate a sequence defining function into a recursion defini- .

: . S )
. _ - “n+l ) :
tion we seek k f°:;$n+l = kSnN. Clearly k = 5, .- Find k {or
eacl? of the following: (Note that k will usually be a function of n.) .
~ , -«
. . N .
3)  (m) 4) (@n-.1) .
2" 2 - 3P
" (27) (2 = 37)
\

7 (L)
n

9 - 13 “Trandlate into verbal algorithm steps the recursion formula for

each of the following. Use your results in Exercises 37 8 ‘

\ .
) ‘ 2n+1l
9) (2n-"1) Solution: In Exercise 4 we found Sn+l = Sn . 2.1 .90

2n+1l

we have S« S
.2n-1

\

10) (a 1) (2 -3

' - 2
13) 0§ = (n!]
n (2n)!

gnd then- $ =% +8S.

12) (L
n

LA

14) Use the second'algorithm of Example 2.6-1 to program and cal- -

/
Compare your answer with el -1,

/ 1
- culate $12 f(ir Sn— =

using the e* key on your calculator. '

’

15) Use the definition of the Fibonacci Sequence to write the first light,

terms of the sequence -
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16) A \jpbal algorithm for ge;lerating terms of the~Fibonac'ci Sequence

[} - . .
follows. In it we will use R ‘to repre\éent storage register n. .
n .
. - , - ] R ) _ |
: - " 1)} Display b o1 2, 1 Lo / |
. ' ' - ’ - S
. . ) ~ Note: This represents n = 1, Sl- =1fn= 2, S2 = 1 |
2) Set ne=3, Rlo-'l, Ry 1 :
) »
¢ i ' h
. Note: We are using R1 = sn-l, , '-RZ = Sn-Z : . -
. N . 3) R3<"-'R1 ;I—R2 Note: R3 =.Sn‘
» . .
4} Display n, R, . ~ Y V4
5) If n is large enough,. stop; otherwise
/ N : \
\L‘ 6) n €& n +'1, Rz“"' R.l, Rl’—R3 \ \ ' - R
/ ) < > ' ) l
7) Go to step 3. ¢ : .

| /. Program your’ calculating instrument for this algorithm and record

. Sn for n=1, 2, 3, ..., 12.

17) In the case of the Fibonacci sequenceg, the simple recursion formula

replaces a complex de.fining fullction:

- Program this defining function and calculate S, for n=1,2,73,...,12

a \ .
to compare with your answer to Exercise’16.

18 - 20 Itis pdssible to work backwards with some sequences (but not «,

S 5 etc. Fom each of the following calculate *

others) to calculate So, S 1’

SO' S_, &md S-Z' ‘ When possible also girveJ aigvormula relating S;n to S_.

’ ) -

f Cos
Recall that INT means the number "rounded down'' for numbers > 0.

Q. ’ . . 1
i < <v
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>

18) ’The arithmetic sequence "1, 3, 5, 7, ...

S

19) The geometric sequence 3, 6, 12, 24, .

. $
20) The Fibonacci sequence




z.7

interest formula

Applications ’ .

| ]

,An\important applicafion of sequencés is to banking. ‘Earlier in,

* your study of mathematics you shoeuld. have' learned the basic simple

J . *

14 b 3

NG

&

~ EXAMPLE 2.7-1 Fipd the simple interest on a $100 loan at 5%
. ] )

per yearvfor 4 years.
. .

Solution:  Substituting in the simple interest formula:

- i =100 (.05)4 = 20

The interest is $20. ' o |

*

N

%,
Compound interest differs from simple interest in that the interest

" is calculated on the new principal (often designated the amount).,/ s

’ - . . . \ .'
' for each unit of time is added to the principal so that subsequent interest-

-

EXAMPLE ,2.7-2  Find the interest on a $100 loan at 5% per year

for 4 years compounded annually.

i - Solution: (by arithmetic calculation):

-

Year 1: ip= 100 (.05)1 =5

n

: A = 100+ 5z 105.
J ‘ “
Year 2: i, - 105 (.05)1 = 5.25

, AZ =105+ 5.25=110.25 - (An_”— n ‘.n

L)

" in which i = inte rést, p = pr{indipal (the‘an'wun’! b/ankeci or-invested or loaned),

s
L

© r = the rate of interest (per unit of time) and‘'t = the number of un;xts of tixﬁe.’

-




2.7-2

o' <

o M » ) “~ *
. Year3: Y- 110.25(.05) 1=5.5125
g '-A3 = 110.25.+ 5.5125 = 115, 7625 -

; Year 4:  i=_115 7625 (.05)1 = 5, 788125

A, = 115.7625 + 5.788125 = 121. 550625

- ’ 'i'he final.amount less the principal is the compound

. .inter"est 80 ‘

. Total interést = $121. 550625 - $100 £ $21.55

-

Ay -

-

That seems like a great deal of work to go through to achieve a gain
’ . .

of $1.55 in interest over 4 years; however, we will see that this kind of

. difference is important. We now‘seek'a shorﬁc/uMcalcuhte compound /

interest.

In general, for the first unit of time, an investment p at-r interest

o o
- .

rate gives: , B

o . il = pr_'and A, = p + pr = p(l+r)

ime A, becomes the new principal and

z i, = Ai1'= p(l-+ r)r and . ]

+

For the second unit of t

~

. .. ) . Az = Al + iz = p(l4r) + p(l+r)r**= p(l+r)(l+r) = p(l+x')z

.
! \

) .; Similarly for ,A3, the amount after threﬂits of ,ti‘me;e

. Ay Epasy .
el ¢ Lo ‘ :
or A, : *. . ] - .
4 A= Rl r? . o . \

* . < ' g o . -
Note: Somie readers will be temmpted to round answers at each step.
Practice here.varies but in many cases today banks only round at the
. ‘end of a transaction. K
*ok : .
Be sure that you see how this factoring.is accomplished.

*

# . \

-
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l - Solution: ituti

2.7-3
4
This pattern provides the basm
—
. COMPOUND INTEREST FORMU LA
@ (2.7-1) ”
). A, =rpl + r)n
B

. € .
in whlch A is the amount jccumulated after n time units on principal

4
Pr at 1 rate of interest per tlrne unit,

]

EXAMPLE 2.7-3

Find the interest on a $100 loan at 5% per
year for 4 years compounded annually

. (This is Example
*
2,7-2 again. )

A=

Substituting in the compound interest formula (2. 7-1)
» 4

100 (1. 05)* = 121. 550625

1

This amount less the original principal represents the
interest earned: $121.55 ->$100 = $21.55

A Y )
In the formula A= p(l + r)?, the role of each fac or,

l1+r, maybe
considered ‘as contrrl}utmg two separate parts to the amount:

»
the multiplier 1 gives back the amount from the beginning
1+4r ’ of the period

»

the multiplier r giveé the integest for the pe‘rmd

This is then applied for n interest periods te give the effect (1 + r)

. [
In the past interest was often compounded annually, semi annually,
quarterly, or monthly.

Today, with access to computational tools, interest
is almost always COmpounded daily.

Here is a table that shows hnw stated

{
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SN0

L3 “ .
® '

>

4

interest rates may be converted to effectlive annifal rates:

N
N
N

L 4 -
rate for multiplier multiplier on effective
styted interest interest per interest amount annualX¥nteres tl
" rate period period per year  * rate
: . :
r compounded r l+r l+r . r ‘ l
annually ) :
r compounded %‘ 1+% (1 +5) (1+—'3)z- 1° l
. 2 L)
semi-annually :
r r r .4 ' r 4
r compounded I l+Z (l+z-) (l+—) -1
quarterly ‘ )
r compounded —:& 1 +li2 (1+75 ) a4+ 1.
monthly L \
_r_ T r 365% . r_ 365 I
r compounded 360 1+ 360 (1 + 360) {1+ 3‘60

daily

EXAMPLE 2.7-4

5% per year compounded daily.

"Solution:

. 05 00013888, . .

360 ..

the limit of our calcula

—_—t
* ~ .
Notice the different numbers‘fere.
fer the highest effective annual interest
law to a maximum r.
mortgage and loan rates must go up as i

eff@%tive rate as large as possible the divisor, 360, is used as the number

of days in a so-called 'banker's year."
ber of days in the calendar year.
as 'five additional interest days. ",

b

Find the interest on $10, 000 for 35 days at ‘

If the annual interest rate is 5% the daily rate is -

Today banks are in competition to of-

(One reason for this legal restriction is that home

Advgrtising often refers to this difference
. :

- l

Using this value,accurate to

tor, we haye:

rate, but they are restricted by
nterest rates rise.) To make the

‘ihe 365 then represents the num-

4

o
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for $1.00 after a year. Greedily we seek to increase our return still

. DA S o 2.7-5
I3 * b F

19, 000 (1. 000138889)%°

o
1)

10027. 81446 which rounds to $10027. 81

EXAMPLE 2.,7-5 Calculate the daily multiplier and the

)

effective ?nnﬁ interest rate fog_gle followjng annual rates

- . 3
compounded daidy: 5%, 72%, 9% "

bt }

. /l¢olutio’n: You should check the following calculations:

Rate . Daily Multiplier  Effective Annual Rate

. I \ 1+ 555 (1+ 3505
| .05 1.000138 . 05199769
0775 1. 00021527 ;08173683
L0y 1. 00025 . 09553036

Theikey’ to compound interest is to be found in the factors °

\

1+ )" .

-

We now examine a more general app‘fication of such factors. To lead to

this, suppose for a moment that we had 100% interest per year. Such a
- + » N .
large int@rest rate - which might suggest loan sharks - would retarn $2. 00

further by compounding. This would result in calculating

-

(1+"‘)

4

forn in?‘rhst penods (We'do not allow the extra days of our dally terest

-

calculatmg in Exercue 2.7-5.) Check the following calcblatxons of thns func-

~ .
-

tion for, ihc reanin‘g values of n:
C 3, 126
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. d ' 2.7-6
- o~ ’
/o S a
_ n- ' 1+ ) ,
« 1, 2 ,
. - ) 2 2.25 (semi-annually)
' 4 2.4414+ (quarterly)
12 2 613+ (monthly)
52 2.692+ (weekly) € .
365 2.714+* . (deily) . .
365,24 2.718+ © (houxly)
" 365.24.60 12. 71826+ (by the minyte)

It turns out that

it l1.n - *
lim (1+ =) =2. 718281828+ i |
n-» e0 n !

and this important mathematical constant is gssigned the name e. In
- ¢ L ° .

-~

» . .
- fact we may define e* as ' . »

eX= lim (1+ =)°
n-res n

z

- - i ! /
There is an e~ key on youyr calculator. You should check to see that e1

is indeed 2.71828+. You will meet this ubiquitous fpncftion a.gé.'m in the

—/exezcises and in Cha.p'ter 6. (In fact you already met it in exercise 2.6-14.) |

%
J . : \ . .
/ ' We turn our attention now to a quite different problem, a gambling
\ ’ 2 . .. B -2 o .
. problem that is translated into a series exercise. We supply the probability
. / X i )
- * - . » ‘ {l
background only superficially. , . ,
o - R \
(‘ .
. . . '
*

One way to remember the decimal approximation to this constant is to.
think of .it as 2.7 followed by two 1828's: thus; 2.7 1828 1828+“ This

repetition does not continue: e ’is like % in this regard.
%

For this pi-c;blem we are indebted to Stephan L. Snover and Mark A. Spi

ERIC e Ad27 '_ ‘-
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EXAMPLE 2. 7-6 'A carnival booth offers the following game.”

» [

You toss a fair coin (chance of heads 1/2, chance of tails 1/2)

‘ untilsyou toss the first head. As soon as that happens you are

to be paid in dollars the square of the number of Yosses. What

would be a fair (break-eveh) price fo pay to play this game?

Solution: Here is a chart showin; the number‘f tosses
’ ) against the amount you win g
. 'Toss FOR FIRSTHEAD 1 2 3 .4 ... n
~> PAYOFF 1 4 9 1 ... nf

' - ’
Thus, for ex*xple, if heads came up first on the fourth

N

. »
toss you would win $16. Simple probability theory shows
that your chances are:

TOSS FOR FIRST HEAD 1 2 3 4 ... n

P

CHANGE = 1/2 1/4 ~1/8 1/16 1/2n

and-your expected gain would be the sum of the series

17 y 2
$= — . 1‘+ —l- . 4 '+ p9 + -L' 16 +o-- + -n—+ f v
~e ™ 16 Al Zn

- s
- ? »
For the game, to be fair this is also the amount you should

Ty «
N L]

1
4 8

-

pay to play. Since $ is neither an arithmetic nor a geo-

metric series, a reasonable solution is by calculation via

Y

. aprogram. The procedures of section2.5 applidd Nere
! #

»* should suggest the ljmit: .,-,

N

v ~
.

nlim $n =. 6




! e
\ , o : i
Be sure that you carry out t\his calcﬁlation. (See exercise 2. 7-1).

A )

This result means that’ $6 is a fai.r‘g{i)ce‘ to pay to' play this ga{ne-. If

A}

you're asked to pay $10 to ;;la\y syou will lose on the average $4 per game.

* \
\E-xercise Set 2.7 . .

—
1) Program and calculate the value of $ for \example 2. 7-6.

-

-

-

2) Try the game for'yourself ten times.“ Find the average payoff per game.

" Do your results agree with the calculated value? (You may wish to
4 ’ ‘ v
combine values with those of your_classmates to obtain an average
v ' \ . : - -
. . of a larger number of plays,) e . .
' '

3) Modify your program in exercise (I) to'calculate the fair cost of the
game if the payoff is the cube of the pumber of tosses to fihm

- K 4) Test the game of exercise (2} l:'y ten trials.
( ! R L -

5 - 8. Find the effective annual interest rates for the following loans:

5) 6% compounded quarterly g . 6) 10% ¢ompounded monthly

. S ‘ o
7) 8 %% compounded daily 8). 5.% % compounded daily

1 .
- 9) Credit card purchases are often charged li% or 2% interest on the

- -

¢

. 4
# unpaid balance each month. Thus tHe multiplier per month is

1.0i5 or 1.02. Find the éct'ive annual :‘ate/of this charge.. Comment!

10 - 16. Loan and mortgagé payments become complicated by repayments

3

~of principél. Thus .the balance ‘orm principal on which interest is calculated

is changing all the time. Here you can work through a simplified example to

’

b

o - L | 129
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see how this \;orks., You take out a loan &f $1000 at iO% interest per )'rear

’ e
compounded annually, We seek the amount of the equal’payments if'you are

to pay at the end of each year'for ten years. ' . 4
10) I there were no interest how much would you pay each year?
. (
11)° If you Raid $100 each year on the prmc1pal and pa1d the interest for

that, year’your payments would be unequal Calculate them. Partial
»

801ut19n: Year 1: $l(ZO.+ .10 ($1000); ‘yea'r 2: $100 + . m@zoon etc.
Find thF total of these payments.. - . .
How much intere.gt is pa;d? P
Compare Fhi.s with the interest on $500*at 10% per year compounded
annually (with Ho repayments). . '

Find the average monthly payment in exercise (11). For equal re-
payments this may be the monthly p;yment.

For the first five years, who suffers by the method of exercise (15)?
Peter Minuit in 1626 purchased Manhattan Island from the Indians for

trinkets worth about $24 That seems like a remarkable deal, given

the current value of the island real estate. BthIet’_s examine this

/

[

value. Suppose i@stead of investing‘'in real estate the Dutch colonist
had stayed in.Rotterda_m and inve’sted/carefully in securities paying
an effective annual rate of 7%." What wo’uld hi;; investment be worth
today? :' | )

Develop a program t¢ calculate the amount to which Minujt's invest-
ment would have acc;'ued for a given input year. Use it to determine

Startmg with a loan of $1000. and ending with a loan of $0 means that the
EKC average loan was $500.
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: . v % .
; th@ue in 1700, 1776, wgo, 1864. 1900, 1918, and 1970.
' P .
19- 27 - * Sometimes calculations can be misleading as this series of
) “questions will show. We will calculate the approximate number of ancestors

v

you had at the time of Julius Caesar about 2040 years ago.

‘ 19) How many (biologie\al) parents do ‘);ou have ?*

20)

How many grandpar;‘zs do (or did) you have?
%‘

21) How many great grandparents did you have?
paterpmal — maternal

grand- grand- grand- grand-

™ : father mother father mother

father’ ;pc?the}' ’

L]

- you
A FAMILY TREE

22) _This pattern suggests that the number of relations is multi-

plied by wha}t numbtor each generatio;? 4

a

23) If one generation is 30 years, how many generations ate there

in 2040 years? S
24) Using your answers in 22 and 23, cvalcul’ate ﬂ‘ approximate

number of relatives you had 2040 years ago in Julius Caesar's

_N

time.

25) Calculate by this means how many ancestors you would have

had at the time of Homer about another 480 years earlier.
) .
26)  What is wrong with these results? In answering you may wish

to consult an encyclopaedir, almanac, or history book to find

the approximate world population today and 2040 years ago:

27) Where did our calculations go astray? |
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A Test 2.8 -1

/

2.8 _Cﬁa!ter 2 Test "~ ' ’ ‘ . .

0
-«

A , |
(1-4) Identify each of the foflowing sequences as (a) arithmetic
. . |

.,

(b) geometric tc)lneither aritﬁmetiq\sf geometric. 5

1) . 3, 3/2; 3/4, 3/8, ... ]

. b
2) 5, -10, 20, -40,
» Lo 3%
& . %,72, -2, -6; ...

€

Give an examplé of a gequence that is both aritBmetic and

geometric.
.

Find the tenth term of.ébe séquence 12, -6, 3?.-%_,

.as a decimal - o ) -

r

as a common fraction °
a . (' .

(8-11) Find the indicated term of each of the following sequence

or series. ‘ L . '

»

- 8) {tan é. i. étn @, .. } ’ S30 -
1 1 ‘ '
9) {1, “%, 75 }. $8;
10) {20, 14, 8, ... 17‘
11 1, 3,5, 7, ... | .
b1 } %20 ¢

1 4

-~

(12-13) Find the sum of thésqgfinite series.
A . g -

12) 500 + 250 + 125 + ... + 3.90625

13) 1+ 2+ 3 +—=+—+n

S




Test 2.8 - 2
(14_15) Find Fhe "sum',' of these infinite, series. &/\
14) 1+ .9+ .09+ .009 + .
15) 1+ % + % + 2% + NN

16) ‘'Express 2.435575 as a rational expression in simplest
form. . ‘ ) "

-17) Find the limit of the sequence Sn as N - oo .

2 18) Find the limit of the sequence
e s, = (1 + %)P as n T+ :o .

19) Debermi he exact value of 14!

20) Given the geometric sequence §; = 10 and r = .1, find d
’ fortche arithmetic sequence formed by taking the log of

eaeh serm ' ~
£

4‘1 -
= ‘\\\
.
.
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N
~

CHAPTER 3. ITERATION, MATHEMATICAL INDUETION, AND THE BINOMIAL
THEOREM {
In Chapter 3, we turn our attention to some‘fundamentgl
mathematical techniques: concepts, and notaﬂlon Your calculating
power and more specifically your ability program a c!ﬁculator .
) ‘ o

&

‘ ‘ }
or computer.to do routine tasks should give you the ‘tools not only
/ y -
v \ ;. '

to solve problems but also to understand the underlying concepts here.

3.1 Over and over and over and... Iteration’

.You have almost certainly met problems before that appeared
\
to be extremely difficult but that turned out to be transparently
° ) * »
simple oncesyou were able to develop the right approach. We con~

sider ope such problem here:

~ Simplify J2A+ 02 + 2 +J2‘¢f?;?

This example certainly looks d1fficu1t Most of us are al-

.

" ready uncomfortable W1th radicals - ‘they turn'up those messy irra-

‘tiongls like V2 = 1.41621356...’- and here we have still worse:

radicals within radicals. Not only that but these square roots and
twos go on forever. Given this example on a test our first response
might’azfl be to move on to “the next question. That would be un- A

fortunate, because you will see that the problem is quite reasonable

and may in fact g:\sqlved in several ways.

-

ar

— . .
This does not imply that there are no truly haéd problems, but mathe-
matics by its very nature often leads to remarkable and unexpected
simplifications. ///Jﬂl’ _

134
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EXAMPLE 3.1-1 ° Simplify 2+ 42 + 2+rz——

" -

Solution 1: Wathematlclans ‘(and espec1ally textbook

writers) do not usually assign imggssible exercises,

80 we expect that there is indeed a value to.this

-

expression. Can we get an idpa at least of what
that:value‘is By calculation? Indeed we can. | .

Think of the expression as a kind of sequence:

-, ing froq‘tﬁe‘innermost ragital in each céée. Check *
the following Witb your o :
- \F3 . = L2
~ R P SR = 184787
| Zigsn. .= 1.9616

J2 +]7 +{2+—ﬁ— = 1.9904"

Now it-is not necessary to start over to carry out

calculator:
‘ +

-

.
4 ) s !
» ¢
ks .
. . # .
Sl Nl =S IS I N E B D RSN BN B B B S e
3y + 3

each of these calculations. WNotice that you get each

. “subsequent value'by adding 2 and taking the square root

of the sum.” These stepe are:

w10 [
RPN: m _
Continue this procedure until your result no longer

changes. To save effort and to aVOig errors it {s &

-

on al ebraic calculators -especially don't forget to complete the .
addit%on before taking the second square root. The steps here

'couldbe E] @ E . R '




' From what we found in Solution 1, we can write the recursion formula:

Y B 1

3.1 -3

. h good idea to prqgram” these steps.

The procedure you followed in Solution 1 1s called an‘iterative

procedure. To iterate means. qu1te simply to repeat Perhaps our
most important example of an iterative process comes from biology

breathing There are many, many others in our world

=,

e

Iteration is ve!y closely related to recursion which we studied
in section 2.6. 1In fact you may conslder the two words synonym
Here if we asslgn .values to our approximations'we can easily dev op

-a trecursion formula fox our ksolution R ‘

= {2 +§2 +H2HT o

/

Let:

and let ' _ C .
. ) Xy = vZ , Xy the first approximation | _ \\\\d
' Xy = |2 +J72 , X, the seéond‘approxihation <
= J2 +)2 +J2 » X4 the third approximation

xn_*_.1 = \JZ+ X,

which together with. X, = V2 , will 'generate the sequence.of ap-

=4

proximations we found in Solution 1. ' '_ g

~~

. . So far what'we havé done only formalizes Solytion 1. But there

is a tremendous honus in'this formalization as we will see. In fact

: Solution 1 is really not even a solution in a. strict sense. We

merely found that the calculator value no longer changed. If you.

-

135 -

o "




think about it for a minnte or two-ypu will realize that a cal-
c‘u.l.atnr with u%ré decimal places would have allowed continuing
change. The ,calc ator "solution” then just’ ledﬁ\us to a very good

\

guess. Let's see then what Solution 2 will give us.

EXAMPLE 3.1-1 (again): _Simplify‘\,‘Z YT

.
4 Solution 2: We identified the iteration formula

X+l " V71 Xn

-
-

. . o ’ ) R
on page 3.1 - 3. Now we ask ourselvles what ‘would happen*

-

\ when, in our *ltergtion or re'cursion. or repetition, we

truly no longer changed from one step to the next? At

thet time (Q should expect- c' ‘ s 3

~ ™ L3
X 41 ='xn = x; thg-value of the complex radical.
. If that 1; the case, we need substitute x fot

. [ .o
CXn+l and x, to get .

~ x =\2 + 5

This is an easy equat i to solve by the folldwing steps

S -

(by squaringy -

DD - |
x =2, -1 L e

Since x = -1, 1is extraneous (why?) néhaveftﬂne expected

'solution x =2, . . '

H . ) . \,

You will meet other 1terat1ve processes in the exercises and

then will apply this technique to the solution of equations i the -

N L4
, next section. H) ) ‘ - .'
L ) K '




' AR - : ‘ 3.1 -5
é;brciée Set 3.1 ' . : — : ’
1) Use the'methéd of Solution 1 (page 3.1 - 2) to find, . .

/ y =36 +J6 +l6 + .. - I

2) What is the recursion fqrmula‘for the iteration in exercise 17

- %) Use your recursion formila of exercise (2) and the method gf
 Solution 2 (page 3.1 - 4) to find y in exercise €1).
(4;L 11) Another setting in which iteration océur; is in the study
‘of{éontinued‘fractions. We will hot study this i;?ﬁresting topic

-in_detail in this course but will considei‘?nly specific cases of

infinite continued fractions, that is fractions of the form
: & ¢

a.+ 1
. b+ 1
c + 1
A ... 3 ‘o

‘Cbnfip4ed fractions have what are tethnically called coénvergents,

that is values that approach/g; converée to their value. ¥or the ~

example-above the convergents -are:

T 1, . 1 s 1
a, a- s » a+ —b—+'—I , a + bT_I__ ,
RS

In the following exercises use these ideas to find the value of x

)




4)

5)

6)

7)

8)
9)

10)-

¢

11)

3.1 -6

)
Write the fitst four“conve:geﬁfs for (a). Leave these answers

in fractional form. Label these convergents il. X3, X3, and

xa.

‘In your answer to (4), locate the part of x, that is the same

as x5. Draw a loop around this part.
Similarly loop - the part oﬁ‘x3 that is thg same as xz} and

following:-the same pattern loop the part of x, that is the same
- «

as xl.

If you have performed exercise (6) carefully, your work should
justify X = 2, Xy = 2 + %I . Continue this pattern qu
xq = £(x;) and x, = £(xq). . ) '

Generalizing from (7), express x ., as a function of
P;ogram your calculator or computer to tompute x 1 from X,
following your recursion formula fo; (8).

§tartiﬂ§ with x, = 2, c3lculate successive convergénts until
X4 = X, Give the value of in when this happens.

Replage X +1 and £n by x in your answer to (8). Solve for x.

How does this answer compare to your result in (10)?

" (12 - 20) Another of the many applications of itergtion techniques
is to the calculation of roots. If we wish to compute UN by ltera-

:tion one app;;§ch is by tﬁé following\meangzx\ RN
.Leél x- = Jﬁ- ‘ " .
x2 = N (squaring) ) ' ' @ ’
x= Y (atviding.by v .

2

You will need to recall’ that for ax“ + bx + ¢ = 0,
x = (-b *VbZ - tmc)/2a’




- x"|

12)

13)

16)

17)

18)

19)

*. 20)

L T

- use it to compute\3)60 . Use X, = 1. Check yq_r answer by

31-7.
L .
[
- , . - ~
2w= x + g- ‘(adding x) (%)
1 . . z
x. - 5 [x + I}%] (dividing by 2) ‘
Ve now set _ Lo ) .
\ ‘ ‘(b) xn+1/*-‘-- 1 (x + —:— )

‘ arhl we have our reeursion formula for finding N .

'Prcgram your calcuiator to compute xl_le f?om\x in formula (b).

Assume that N is ?tored in RO’ a4nd if necessary store X, in Rl.

Lgst the program steps.

) e RN -
'Use your, program ir exercise (12) to compute d19. store 19

in R0 fpter 4 in ’the display (as xl)‘. “Give your answer after
X, no lponger éhangés Compare this result with 19 ,calcu}ated':'

by use of the I,..key \
14) -
15)

Why was 4 a ggod c!oiie for xl

Repeat exerc (13) but using.x; = 1. =

Repeat exé:cise (13) but using X, = 1000.

Repeat exerc'lse (13) but using xl‘ = -10. ~Row does this solu-

-tion Qiffer from those of exercises 13 - 16? Is it <carrect?

Use the same method as the one be,fore exercise (12) to derive
a recursion equation for \} (Hint At, (*) gdd';x 2)

Prograﬁ your calculator” for the iteration of exercise (18) and

X - o,

cubing it by means of the |y key. ’ . . .

. . : 1 : .
Develop a formula for computing \SJ'N , piogram it and use this

() . -




‘program to comput'e\sjm_.-. (HPnt: At (%) add 4x.)
. . . S *
1t may be of interest to you that the.program of exefc%ee‘(f?) 14

often the one that is preprogrammed (or "hardwired?) into calcu-

lators fq;//he J keyh These hardwired programs usually use

‘,either X, =1 _or x; = N. The iterative technique of exex",cises’
(12) - (20) is named after the 'fan;bus' Englibh mat;hematician and 3y
scientist, Sir Isaac Newton. (You will recall perhaps that Newton
is’ supposed to have 'thought of the concept of gravity vhen he saw
. an apple fall from a tree.) The techniq\;e As variously)lled

Newton s Method or the Newton Raphson Method. In 1its more general

form it 1s a calculus technique

l
I
1
g
1
1
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3.2 - Solving Equations by iteration,

. - -

<« * In exercises 12-20 of,Seotion.3.I you have already used itera-
tion technihues to.éoIVe.equationsWof the'forﬁvxn = N: -In this
¥

;f, section'we will first solve systems of equations by iteration and

-

. then return 80 the solution of. 31ngle equations

Figure 3.2-1, shows the graph ,,of the system of- equations '

L . x4+ y=5 ) (11ne ] l
L i. =2x -3 _. .(line m)

. ¥ . "
We know, of course, that the solution of this system of equations

is found at point P of the grdp%* But here/we want to use the graph

instead to justify our iteration procedure)

- We convert the equations of lines’ ‘Z and m to the following
N 1

- . ’ (y=5-=x (1ine4L )

L;_3 (1fne m)

X

L
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—

Be sure tO'satisfy“yourself that the algebra-is correct. Notice | '

thatﬂone'gqéétion*is solved for.y in terms gf x, the other for x

in terms of y. I
E We start with an arbitrary choice for x, X, = 0. Substituting

this into the equation for line £ gives y, = 5. Substituting 5 for I

y-in the equation for line m gives xé = 4. Continuing to trade back l

N\ ;
and forth between the two equations, always substituting the currept

“Value of x or y to obtain a new value for the Wther, we obtain )

L A
/

The arrows show

Y .
*’f:” 9 how each value

w = WU

5 —%, 2.5 contributés to )

75 L, 2.25 the next.

”~ .
625 —=%> 2.375 ;

N N N W NN P>~ O

ZTable 3.2-1

Whaé is going on herez Whap‘is happening is that we are slowly
ponverging on the solutiops 'x and y of this system of equations.
We can see this on the graph. X, = 0 is a verticél line, in fact
the y-axis. When we subsEitﬁte this x value into the equation for
line 4 , the y value that results (yl 5) is the y value where

these two lines intersect as shown in Figure 3.2-2.

¥

/ Co
143 | \




. .A B - ‘ a ’ 3.2 - 3

- Now'y = 5 is a horizontal line. When we sGbstitute this value
intq’the'equatibn for line m, the resulting x value (x2 = 4) is the
x coordinate of the intersection of ¥ = 5 with m. This part of our -
trail is ﬁarked in Figure 3.2-3. .
We have'éﬁly to continue this process to see how Table 3.2-1

is formed. Additional segments of our spider web trail toward P are

shown on Figure 3.2-4.

.4
Lo




The a#flment we have presented and Figuré 3.2-4 should justify
claim that the values of xé and y_ in Table 3.2-1 are converg-
ing on (x,y) ;~the solution of this system of equatioms.

But wait a minute. Why should we go "to all this work when we .
have much more straightforward methods of finding spiutions to- 8ys-

tems of equations? The answer to this question is imp??tant. There

. are many more complex equations that also respond to the iteration

technique that we have used when none of the other methods work. ﬁé

- have deyefoped and justified technique with avéimple examplg.

Naw let us apply it to a more’difﬁiéult problem:
: ~ ‘ " ‘2.
EXAMPLE 3.2-1 Solve for y: y =27 .
. - 2 : .
Solution: ' y = 277 is a complex equation indeed. One

L |
possible way to solve it is by trial and error. Choose

.

a yalue of y, substitute it, simplify, and see if tpe ‘

_equation balances. For example, if y = 1

2
2-y2 = 2—(1) = 2-1 =

L L " [

but since the left side of the equation/is 1, we are not -
too close. L

?ﬁ Another réute to a soldtion is to use iterétion, To
do this we introduce another'variéble;ﬂx, to givezus a

second equation. You should convince yourself that:

. B 2 (y=2% (1)
?i\ , y = 2‘y is equivglent to 2
. . . . - . < .. =y (2)

s

o - . ’ /1%
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The system of equations may be solved by iteration.

Again we start with?a gﬁess,lxi = 0, substitute it in
-equation (1) to'gsnd Yy substitute this y-value into
equation {2) to get x, and so on. You should prograﬁ

. *
your calculator to check our progress in Table 3.2-2

" (see exercise 4): - oL ®
) n i X Y,
1 0 ;Iéf%’ 1 ,
2 1 —zsﬁla/ 0.5
R c ‘/‘ +
3 0.25 ——le 0.84
| 2= N
' 4 ;07174 961
ean- - +
25 . 0.500 0.707
\ , 26 - 0.500" 0.707*
\\\ 7 Table 3.2-2
,> Our original equation did not call for X, so we claim
y = 0.707
. - ° ’ ' / *
Lo * - /
An algorithm to accomplish this is:
1)) 'Seta=0.- . ' ' (This is x,)
2) a e 272, display-a. (This generateslyn)
3) Stop if enough pairs have been generated. .
’ 4)\ a & a2, display.a. - (This generates xn)g
'5) 6o back to step 2. | s
. 4 -
o o ) '
. . 5




I
»

You should check this in the origlnal equation to see

that it balances (approximately)’ o

To show how our iteration process relates to the graphs of

‘these functions, Figure 3.2-5 displdys the first several steps:

—— - Q ] ‘ ! - .-
- ; -
. ——— - - — |
‘ =] o ,
- -,__..___1 ~ .'l - rR=g . i
-gut - :
! A 1’ 0:“" R . |
— - - s T —_ e - v °
- ' L ?ﬁg*gs‘ ; ) A I
%=ty = P EE——— + -
{] x“ou v '
- ——t - e - . ——- —
. ’ N
S o < R W
, T AT ek ki
. : . ’!".' R B ..—L_._-.l___ — v
LI / I 1 : ~ L l ——
T s ..
— T T T i IR .
o [
! , IS ,
. 13 ——— .
| ol 5 L 1ox ] :
T : N N
o ' Frauns, 3.2-5 N e
N Ca F . B
- i | : . t 1 l ! !

You need not be concerned at this time how the graphs themselves were

P .

constructed ' . . . :

L]

In the exercises’ you will. explore these techniques further

and use them to solve other problems ; .

>~
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AN

4
Exércise Set 3.2
-~ -

' ‘system of equations on page 3.2 - 1. An algorithm for this

A

| -

Program your calculator to carry oyt the iteration for the

”f process 1is:
1. Seta=20 ’ ) (This ié xl)
o2 ,Let.a eJKSLa, display~a_' {This displays yéz
3. Let a ¢« (at+3)/2, display a ’(This d;gplays xn) _
] | ;ﬁ‘ Stop when enough pairs have been generated ’ ) S
Go back to step 2.

5.
Use this program to calculate X, and Yn until the two values ,
(separately) remain unchanged to 3 decimal places. (You should

‘\check your first few values against Table 3;2-1,.

xpompare your answers in (1) to the graph in Figure 3.1-1. -Do
x+y=395

y=2x -3 |

L]
-

2)
J
_ iour answers seem reasonable?
3) Solve this same system of equations ‘{

by another algebraic method. How does this answer compare

\

‘with youf iteration solution of exercise (1)?
4) Program &our calculator to carry out the fteration of Example

i ‘ : .
3.2-1. The algorithm for this is given on page 3.2 - 5. Use

your program to find Xe and yg to 2 decimal digit accuracy.
counter into your program, but it is

(You may want to build
enough here to cqunt s{eps yourself.)
po—




T 3.2-.8

In the iteration of Example'3.2-1, to what Value does x

F .
appear to converge? (See Table 3.2-1) Use this value and
* s

thé equation y = 2°* to express y im radical form.

How does your answer in-(5) for y compare to y26 in Table 3.2-27
2

Does your answer in (5) check in the original.equation'yl- 277 1

L4

14) In these exercises we seek an iteration solution for

Al -

{ 3y - bx = -3 ()

3y - 2x = 3 (2) °
Solve equation (1) for x in terms of y.
Solve equation (2) ﬁé; y in terms of x.
Develop an algorithm for'genérating successiye approximationg
xn,and‘yn to this system. - K
Program your algorithm of exercise (10) and use it to convergé
on values of x and y. What are these values?

éigure 3.2-6 is a graph of the system you have 